More Support for Cardiac CT’s Value

A new study in Radiology offers more support for the value of CT-based coronary artery calcium scoring, finding that people with higher CAC scores had worse outcomes, and suggesting that those with scores of 0 could potentially avoid invasive coronary angiography. 

Evidence has been building that by measuring calcium buildup in the heart, CAC scores can predict clinical outcomes, in particular major adverse cardiac events, particularly in patients with stable chest. 

  • Studies ranging from MESA to SCOT-HEART to PROMISE have found that patients with CAC scores of 0 have MACE risk that’s lower than 2% – meaning they could be discharged without further invasive workup. 

The new study is an update to the DISCHARGE trial, which in 2022 published results comparing a CT-first evaluation strategy to one with invasive coronary angiography. The new study investigates the value of CAC scoring by analyzing its prognostic power in patients with stable chest pain who were referred for invasive coronary angiography. 

  • The DISCHARGE study is notable for its diversity – 26 clinical centers in 16 European countries – as well as its use of 13 different models of CT scanners from all four major CT OEMs from 2015 to 2019. 

In all, 1.7k patients were studied, and CAC scores were generated based on CT scans and used to stratify patients into one of three groups; they were then followed for 3.5 years and rates of MACE were correlated to CAC levels, finding … 

  • Patients with CAC scores of 0 had the lowest rates of MACE compared to those with scores of 1-399 and ≥400 (0.5% vs. 1.9% & 6.8%)
  • Rising CAC scores corresponded to higher prevalence of obstructive coronary artery disease (0=4.1% vs. 1-399=29.7% & ≥400=76%)
  • Revascularization rates rose with CAC scores (0=1.7% vs. ≥400=46.2%)

While the authors steered away from commenting on the study’s impact on clinical management, the findings – if confirmed with additional studies – suggest that stable chest pain patients may not need invasive coronary angiography.

  • And in another interesting wrinkle to the study, the researchers pointed out that 57% of the DISCHARGE study’s patient population were women, a fact that addresses sex bias in previous research. 

The Takeaway

The DISCHARGE study’s findings are yet another feather in the cap for cardiac CT, with higher CAC scores indicating the long-term presence of atherosclerosis. Should they be confirmed, individuals with stable chest pain in the future will benefit from less invasive – and less expensive – management.

CT First for Chest Pain

CT should be used first to evaluate patients with stable chest pain who are suspected of having a heart attack. That’s the message of a paper being presented this week at the American College of Cardiology Cardiovascular Summit in Washington, DC.

CT is proving itself useful for a variety of applications in cardiac imaging, from predicting heart disease risk through coronary calcium scores to assessing whether people with chest pain need treatment like invasive angiography – or can be sent home and monitored.

  • But cardiac CT often runs up against decades of clinical practice that relies on tools like stress testing or diagnostic invasive coronary angiography for evaluating patients, with the CT-first strategy reserved for a limited number of people, such as those with unestablished coronary artery disease. 

But the new study suggests that the CT-first approach could be used for the vast majority of patients presenting with stable chest pain. 

  • A research team led by senior author Markus Scherer, MD, of Atrium Health-Sanger Heart & Vascular Institute in Charlotte, North Carolina tested the strategy in 786 patients seen from October 2022 to June 2023 who had no prior diagnosis of coronary artery disease and underwent elective invasive angiography to evaluate suspected angina.

The CT-first strategy compared CT angiography with provisional FFRCT testing to traditional evaluation pathways, which included stress echo, stress myocardial perfusion imaging, stress MRI, or no invasive testing before direct referral to angiography. Revascularization rates by strategy were as follows … 

  • 62% for CT-first
  • 50% for stress MRI
  • 40% for stress echo
  • 34% for no prior test
  • 31% for stress MPI

The Takeaway

The results presented this week offer real-world evidence that support recent clinical studies backing broader use of CT for patients with chest pain. Given CT’s advantages in terms of cost and noninvasiveness, the findings raise the question of whether more can be done to get clinicians to adhere to established guidelines calling for a CT-first protocol. 

Fine-Tuning Cardiac CT

CT has established itself as an excellent cardiac imaging modality. But there can still be some fine-tuning in terms of exactly how and when to use it, especially for assessing people presenting with chest pain. 

Two studies in JAMA Cardiology tackle this head-on, presenting new evidence that supports a more conservative – and precise – approach to determining which patients get follow-up testing. The studies also address concerns that using coronary CT angiography (CCTA) as an initial test before invasive catheterization could lead to unnecessary testing.

In the PRECISE study, researchers analyzed 2.1k patients from 2018 to 2021 who had stable symptoms of suspected coronary artery disease (CAD). Patients were randomized to a usual testing strategy (such as cardiac SPECT or stress echo), or a precision strategy that employed CCTA with selected fractional flow reserve CT (FFR-CT). 

The precision strategy group was further subdivided into a subgroup of those at minimal risk of cardiac events (20%) for whom testing was deferred to see if utilization could be reduced even further. In the precision strategy group….

  • Rates of invasive catheterization without coronary obstruction were lower (4% vs. 11%)
  • Testing was lower versus the usual testing group (84% vs. 94%)
  • Positive tests were more common (18% vs. 13%)
  • 64% of the deferred-testing subgroup got no testing at all
  • Adverse events were higher, but the difference was not statistically significant

To expand on the analysis, JAMA Cardiology published a related study that further investigated the safety of the deferred-testing strategy at one-year follow-up. Researchers compared adverse events in the deferred testing group to those who got the usual testing strategy, finding that the deferred testing group had…

  • A lower incidence rate of adverse events (0.9 vs. 5.9)
  • A lower rate of invasive cardiac cath without obstructive CAD per 100 patient years (1.0 vs. 6.5)

The results from both studies show that a strategy of deferring testing for low-risk CAD patients while sending higher-risk patients to CCTA and FFR-CT is clinically effective with no adverse impact on patient safety.

The Takeaway
The new findings don’t take any of the luster off cardiac CT; they simply add to the body of knowledge demonstrating when to use – and not to use – this incredibly powerful tool for directing patient care. And in the emerging era of precision medicine, that’s what it’s all about.

CT Flexes Muscles in Heart

CT continues to flex its muscles as a tool for predicting heart disease risk, in large measure due to its prowess for coronary artery calcium scoring. In JAMA, a new paper found CT-derived CAC scores to be more effective in predicting coronary heart disease than genetic scores when added to traditional risk scoring. 

Traditional risk scoring – based on factors such as cholesterol levels, blood pressure, and smoking status – has done a good job of directing cholesterol-lowering statin therapy to people at risk of future cardiac events. But these scores still provide an imprecise estimate of coronary heart disease risk. 

Two relatively new tools for improving CHD risk prediction are CAC scoring from CT scans and polygenic risk factors, based on genetic variants that could predispose people toward heart disease. But the impact of either of these tools (or both together) when added to traditional risk scoring hasn’t been investigated. 

To answer this question, researchers analyzed the impact of both types of scoring on participants in the Multi-Ethnic Study of Atherosclerosis (1,991 people) and the Rotterdam Study (1,217 people). CHD risk was predicted based on both CAC and PRS and then compared to actual CHD events over the long term. 

They also tracked how accurate both tools were in reclassifying people into different risk categories (higher than 7.5% risk calls for statins). Findings included: 

  • Both CAC scores and PRS were effective in predicting 10-year risk of CHD in the MESA dataset (HR=2.60 for CAC score, HR=1.43 for PRS). Scores were slightly lower but similar in the Rotterdam Study
  • The C statistic was higher for CAC scoring than PRS (0.76 vs. 0.69; 0.7 indicates a “good” model and 0.8 a “strong” model) 
  • The improved accuracy in reclassifying patient risk was statistically significant when CAC was added to traditional factors (half of study participants moved into the high-risk group), but not when PRS was added  

The Takeaway 

This study adds to the growing body of evidence supporting cardiac CT as a prognostic tool for heart disease, and reinforces CT’s prowess in the heart. The findings also support the growing chorus in favor of using CT as a screening tool in cases of intermediate or uncertain risk for future heart disease.

Cardiac Imaging in 2040

What will cardiac imaging look like in 2040? It will be more automated and preventive, and CT will continue to play a major – and growing – role.

That’s according to an April 11 article in Radiology in which Dr. David Bluemke and Dr. João Lima look into the future and offer a top 10 list of major developments in cardiovascular imaging in 2040.

Cardiovascular disease carries a massive medical burden, with over 800,000 myocardial infarctions occurring annually in the US alone. By 2030 almost one-third of deaths worldwide are expected to be due to cardiovascular disease.

Multiple different imaging modalities are adept at identifying both ischemic and nonischemic heart disease, but CT has risen to the top for ischemic imaging, making “quantum” advances in the last decade thanks to its growing prowess in the coronary arteries.

CT’s advances have been so great that the modality occupies seven of the top 10 spots on Bluemke and Lima’s list. In brief, they see: 

  • Coronary CTA becoming totally automated, a development that will no doubt benefit AI developers like HeartFlow (see below).
  • CCTA becoming a preventive tool rather than a gatekeeper to interventional cardiology (also hinted at in a recent study from Denmark). For example, CCTA will be used to track the effectiveness of statin therapy
  • Photon-counting CT flexing its muscles for coronary artery evaluation and routine plaque characterization and quantification
  • Next-generation cardiac CT becoming more like MRI
  • Next-generation cardiac MRI becoming more like CT
Table of Top 10 Cardiovascular Imaging Developments by 2040

They also see a major growing role for software-assisted cardiac CT with AI and other tools. Software-based automation has simplified the “postprocessing nightmares” once common with coronary CT, making it “wonderfully ordinary” to perform. 

The Takeaway

Bluemke and Lima offer a fascinating glimpse of cardiac imaging’s future. But one area they don’t touch on is whether CT’s rising prominence means radiologists will start taking back turf in heart imaging once ceded to cardiologists. Heart specialists haven’t taken over cardiac CT in the same way that they monopolized echocardiography and nuclear cardiology. Could we be seeing a renaissance of radiology in the heart?

Is CCTA Set for Cardiac Screening?

A new study out of Denmark suggests that coronary CTA could be headed for population-based screening for heart disease. Researchers found that CCTA was remarkably effective in identifying individuals without symptoms who were more likely to experience heart attacks in years to come.

CCTA has proven so effective for cardiac imaging that it’s become a first-line test for stable chest pain, usually for those with symptoms. But researchers have debated whether CCTA’s value could be extended to asymptomatic individuals – which could set the stage for broad-based heart disease screening programs.

To investigate CCTA’s potential in the asymptomatic, researchers in Denmark scanned 9,533 individuals 40 years and older as part of the Copenhagen General Population Study, reporting their results in Annals of Internal Medicine. CCTA scans were conducted with Canon Medical’s 320-detector-row Aquilion One Vision scanner. 

Atherosclerosis was characterized as either obstructive (a luminal stenosis ≥ 50%), extensive (stenoses widely prevalent but not obstructive), or both. Researchers then tracked myocardial events over a median follow-up of 3.5 years. 

They found that 46% of study subjects had evidence of subclinical coronary atherosclerosis, with the type of atherosclerosis impacting risk of myocardial infarction: 

  • Extensive atherosclerosis had eight times higher risk 
  • Obstructive atherosclerosis had nine times higher risk
  • Both extensive and obstructive disease had 12 times higher risk

What’s more, researchers found that 10% of their study population had obstructive disease – which is just 10 percentage points under the 60% atherosclerosis threshold at which therapeutic intervention should be considered for asymptomatic people. 

Participants in the CGPS study did not receive treatment as part of the study, but the researchers have a follow-up study underway – DANE-HEART – in which asymptomatic people will get CCTA scans and some will be directed to preventive treatment if they meet clinical guidelines.

The Takeaway

This study demonstrates not only the widespread incidence of subclinical coronary atherosclerosis, but also CCTA’s ability to detect CAD before symptoms appear. Preventive treatment initiated and directed by CT findings could have a major impact on heart disease morbidity and mortality.

Given CCTA’s prognostic ability and the heavy burden of heart disease on society (more women die of heart disease than breast cancer, for example), how long before calls emerge to add CT-based heart screening to the arsenal of population-based screening programs? DANE-HEART may offer a clue.

Creating A Novice Echo Screening Pathway

We hear a lot about AI’s potential to expand ultrasound to far more users and clinical settings, and a new study out of Singapore suggests that ultrasound’s AI-driven expansion might go far beyond what many of us had in mind.

The PANES-HF trial set up a home-based echo heart failure screening program that equipped a team of complete novices (no experience with echo, or in healthcare) with EchoNous’s AI-guided handheld ultrasound system and Us2.ai’s AI-automated echo analysis and reporting solution.

After just two weeks of training, the novices performed at-home echocardiography exams on 100 patients with suspected heart failure, completing the studies in an average of 11.5 minutes per patient.

When compared to the same 100 patients’ NT-proBNP blood test results and reference standard echo exams (expert sonographers, cart-based echo systems, and cardiologist interpretations), the novice echo AI pathway…

  • Yielded interpretable results in 96 patients 
  • Improved risk prediction accuracy versus NT-proBNP by 30% 
  • Detected abnormal LVEF <50% scans with an 0.880 AUC (vs. NT-proBNP’s 0.651-0.690 AUCs)
  • Achieved good agreement with expert clinicians for LVEF<50% detection (k=0.742)

These findings were strong enough for the authors to suggest that emerging ultrasound and AI technologies will enable healthcare organizations to create completely new heart failure pathways. That might start with task-shifting from cardiologists to primary care, but could extend to novice-performed exams and home-based care.

The Takeaway

Considering the rising prevalence of heart failure, the recent advances in HF treatments, and the continued sonographer shortage, there’s clearly a need for more accessible and efficient echo pathways — and this study is arguably the strongest evidence that AI might be at the center of those new pathways.

Echo AI Coronary Artery Calcium Scoring

A Cedars-Sinai-led team developed an echocardiography AI model that was able to accurately assess coronary artery calcium buildup, potentially revealing a safer, more economical, and more accessible approach to CAC scoring.

The researchers used 1,635 Cedars-Sinai patients’ transthoracic echocardiogram (TTE) videos paired with their CT-based Agatston CAC scores to train an AI model to predict patients’ CAC scores based on their PLAX view TTE videos. 

When tested against Cedars-Sinai TTEs that weren’t used for AI training, the TTE CAC AI model detected…

  • Zero CAC patients with “high discriminatory abilities” (AUC: 0.81)
  • Intermediate patients “modestly well” (≥200 scores; AUC: 0.75)
  • High CAC patients “modestly well” (≥400 scores; AUC: 0.74)

When validated against 92 TTEs from an external Stanford dataset, the AI model similarly predicted which patients had zero and high CAC scores (AUCs: 0.75 & 0.85).

More importantly, the TTE AI CAC scores accurately predicted the patients’ future risks. TTE CAC scores predicted one-year mortality similarly to CT CAC scores, and they even improved overall prediction of low-risk patients by downgrading patients who had high CT CAC scores and zero TTE CAC scores.

The Takeaway

CT-based CAC scoring is widely accepted, but it isn’t accessible to many patients, and concerns about its safety and value (cost, radiation, incidentals) have kept the USPSTF from formally recommending it for coronary artery disease surveillance. We’d need a lot more research and AI development efforts, but if TTE CAC AI solutions like this prove to be reliable, it could make CAC scoring far more accessible and potentially even more accepted.

CCTA AI Predicts Ischemia and MBF

A Cedars-Sinai and Amsterdam UMC-led team developed a machine learning system that analyzes quantitative plaque in coronary CTA exams to identify patients with ischemia and impaired myocardial blood flow (MBF), potentially creating an alternative to current methods.

The researchers trained the ML model using invasive FFR data from 254 patients (484 FFR vessels) to predict ischemia and impaired MBF by analyzing plaque data in CCTA exams. 

They then tested it with CCTAs from 208 patients (581 vessels) who also underwent invasive FFR and H2O PET exams, finding that the CCTA ML scores:

  • Predicted FFR-defined ischemia far more accurately than standard CCTA stenosis evaluations, while rivaling FFRCT assessments (AUCs: 0.92 vs. 0.84 & 0.93)
  • Predicted PET-based impaired MBF more accurately than standard CCTA stenosis evaluations and FFRCT assessments (AUCs: 0.80 vs. 0.74 & 0.77)

Because the ML scoring system operates locally, the authors highlighted its potential to quickly assess high-risk patients before invasive coronary angiography (avoiding off-site processing delays) or to assess low-risk patients at earlier stages, helping to improve ICA efficiency and accuracy.

The researchers plan to continue to develop their CCTA plaque AI solution, including adding more plaque features and CCTA metrics, and potentially seeking regulatory approval depending on the results of future validation studies.

The Takeaway

CCTA plaque AI is already one of the hottest segments on the commercial side of imaging AI, and this study highlights similar advances in academic centers, while showing that CCTA plaque AI can quickly and accurately predict both ischemia and lower MBF.

Echo AI Detects More Aortic Stenosis

A team of Australian researchers developed an echo AI solution that accurately assesses patients’ aortic stenosis (AS) severity levels, including many patients with severe AS who might go undetected using current methods.

The researchers trained their AI-Decision Support Algorithm (AI-DSA) using the Australian Echo Database, which features more than 1M echo exams from over 630k patients, and includes the patients’ 5-year mortality outcomes.

Using 179k echo exams from the same Australian Echo Database, the researchers found that AI-DSA detected…

  • Moderate-to-severe AS in 2,606 patients, who had a 56.2% five-year mortality rate
  • Severe AS in 4,622 patients, who had a 67.9% five-year mortality rate

Those mortality rates are far higher than the study’s remaining 171,826 patients (22.9% 5yr rate), giving the individuals that AI-DSA classified with moderate-to-severe or severe AS significantly higher odds of dying within five years (Adjusted odds ratios: 1.82 & 2.80).

AI-DSA also served as a valuable complement to current methods, as 33% of the patients that AI-DSA identified with severe AS would not have been detected using the current echo assessment guidelines. However, severe AS patients who were only flagged by the AI-DSA algorithm had similar 5-year mortality rates as patients who were flagged by both AI-DSA and the current guidelines (64.4% vs. 69.1%).

Takeaway

There’s been a lot of promising echo AI research lately, but most studies have highlighted the technology’s performance in comparison to sonographers. This new study suggests that echo AI might also help identify high-risk AS patients who wouldn’t be detected by sonographers (at least if they are using current methods), potentially steering more patients towards life-saving aortic valve replacement procedures.

Get every issue of The Imaging Wire, delivered right to your inbox.

You might also like..

Select All

You're signed up!

It's great to have you as a reader. Check your inbox for a welcome email.

-- The Imaging Wire team

You're all set!