Why the FDA’s Density Rule Matters

The FDA’s new rules on reporting breast density to women getting mammograms went into effect on September 10. The implementation has been expected for some time, but this week’s rollout generated a wave of positive press coverage that highlights the importance both of breast density awareness and of breast screening.

The FDA in March 2023 said it would implement a national standard requiring providers to inform women of their breast density, which can obscure lesions on conventional X-ray mammography. 

  • Breast density is also a risk factor for cancer, and patient advocacy groups had been pressuring the FDA to set a standard to replace what has become a patchwork of state-by-state notification rules. 

The FDA’s rules have been incorporated into the Mammography Quality Standards Act, and require that … 

  • Mammography reports include a plain-language patient summary with “an overall assessment of breast density.” 
  • The summary must include specific language that defines breast density, explains its ramifications for detection and cancer risk, and suggests the need for additional imaging tests.

A novel aspect of the new rules is that they were mostly driven by patients – women like JoAnn Pushkin and the late Nancy Cappello who as patients discovered first-hand the shortcomings of X-ray-based mammography for women with dense breast tissue. 

What’s next? Density-awareness proponents are now turning their attention to reimbursement, which for supplemental imaging is inconsistent across the U.S.

  • A fix for the problem – the Find It Early Act – is working its way through Congress, and women’s health advocates lobbied on Capitol Hill this week to try to push the legislation through before the end of the current Congressional session. 

The new reporting landscape also creates opportunities for better software tools to detect and manage breast density and better predict risk in patients with dense breast tissue. 

  • Clinicians already realize that women with dense breasts not only need different screening modalities like MRI and ultrasound, but that they might also require more frequent screening due to their heightened cancer risk. 

The Takeaway

The FDA’s new breast density rules matter for a variety of reasons, from showing the power of patients to change their imaging experience to outlining a future in which risk plays a more prominent role in breast screening. While more work remains to be done, this is a good time to savor the triumph.

AI Detects Interval Cancer on Mammograms

In yet another demonstration of AI’s potential to improve mammography screening, a new study in Radiology shows that Lunit’s Insight MMG algorithm detected nearly a quarter of interval cancers missed by radiologists on regular breast screening exams. 

Breast screening is one of healthcare’s most challenging cancer screening exams, and for decades has been under attack by skeptics who question its life-saving benefit relative to “harms” like false-positive biopsies.  

  • But AI has the potential to change the cost-benefit equation by detecting a higher percentage of early-stage cancers and improving breast cancer survival rates. 

Indeed, 2024 has been a watershed year for mammography AI. 

U.K. researchers used Insight MMG (also used in the BreastScreen Norway trial) to analyze 2.1k screening mammograms, of which 25% were interval cancers (cancers occurring between screening rounds) and the rest normal. 

  • The AI algorithm generates risk scores from 0-100, with higher scores indicating likelihood of malignancy, and this study was set at a 96% specificity threshold, equivalent to the average 4% recall rate in the U.K. national breast screening program.

In analyzing the results, researchers found … 

  • AI flagged 24% of the interval cancers and correctly localized 77%.
  • AI localized a higher proportion of node-positive than node-negative cancers (24% vs. 16%).
  • Invasive tumors had higher median risk scores than noninvasive (62 vs. 33), with median scores of 26 for normal mammograms.

Researchers also tested AI at a lower specificity threshold of 90%. 

  • AI detected more interval cancers at this level, but in real-world practice this would bump up recall rates.  

It’s also worth noting that Insight MMG is designed for the analysis of 2D digital mammography, which is more common in Europe than DBT. 

  • For the U.S., Lunit is emphasizing its recently cleared Insight DBT algorithm, which may perform differently.  

The Takeaway

As with the MASAI and BreastScreen Norway results, the new study points to an exciting role for AI in making mammography screening more accurate with less drain on radiologist resources. But as with those studies, the new results must be interpreted against Europe’s double-reading paradigm, which differs from the single-reading protocol used in the U.S. 

DBT Detects Earlier Cancers in Swedish Tomo Study

A new analysis of a landmark DBT study from Sweden offers more support for the effectiveness of tomosynthesis mammography screening. Published in Radiology, researchers found that DBT screening seems to detect earlier cancers, most likely before they become more aggressive. 

Most U.S. mammography practices have embraced DBT since its approval in 2011, such that 48% of all certified mammography units are DBT and 90% of all facilities have at least one tomosynthesis unit. 

  • But doubts about DBT have persisted, particularly by mammography skeptics who charge that the technology was adopted without conducting randomized controlled trials to prove its value. 

But apart from RCTs, there have been plenty of observational studies in which DBT showed a benefit, one of them being the Malmö Breast Tomosynthesis Screening Trial of almost 15k women in Sweden.

  • First results from MBTST were published in 2018 and showed that single-view DBT screening had a 34% higher cancer detection rate per 1k women than digital mammography (8.7 vs. 6.5), but with a higher recall rate as well (3.6% vs. 2.5%).

In the new study, researchers wanted to see if DBT’s screening benefits persisted over two subsequent screening rounds with conventional digital mammography. 

  • Their assumption was that the cancer detection rate would be lower in subsequent rounds, and there would be fewer slow-growing, less aggressive cancers – a sign of early cancer detection. 

Their analysis found …

  • The cancer detection rate per 1k women was lower in the first (4.6) and second (5.3) rounds compared to the original MBTST
  • Recall rate was 2.1% – also lower 
  • The odds ratio of cancer detection was lower than MBTST in the first (OR=0.46) and second (OR=0.53) follow-up rounds 
  • Invasive cancers were less prevalent in the first round compared to the second round (66% vs. 83%) 

What do the results mean? The implication is that because DBT detected cancers in the initial screening round, there was lower cancer prevalence and less aggressive cancer in follow-up rounds, an effect that wore off as time went on.

The Takeaway

There may never be a randomized controlled trial of DBT due to the ethical problem of denying a live-saving technology to women in a control group. But studies like the MBTST follow-up are important in adding to the body of evidence showing that DBT actually does work.

US + Mammo vs. Mammo + AI for Dense Breasts

Artificial intelligence may represent radiology’s future, but for at least one clinical application traditional imaging seems to be the present. In a new study in Radiology, ultrasound was more effective than AI for supplemental imaging of women with dense breast tissue. 

Dense breast tissue has long presented problems for breast imaging specialists. 

  • Women with dense breasts are at higher risk of breast cancer, but traditional screening modalities like X-ray mammography don’t work very well (sensitivity of 30-48%), creating the need for supplemental imaging tools like ultrasound and MRI.

In the new study, researchers from South Korea tested the use of Lunit’s Insight MMG mammography AI algorithm in 5.7k women without symptoms who had breast tissue classified as heterogeneously (63%) or extremely dense (37%). 

  • AI’s performance was compared to both mammography alone as well as to mammography with ultrasound, one of the gold-standard modalities for imaging women with dense breasts. 

All in all, researchers found …

  • Mammography with AI had lower sensitivity than mammography with ultrasound but slightly better than mammography alone (61% vs. 97% vs. 58%)
  • Mammography with AI had a lower cancer detection rate per 1k women but higher than mammography alone (3.5 vs. 5.6 vs. 3.3)
  • Mammography with AI missed 12 cancers detected with mammography with ultrasound
  • Mammography with AI had the highest specificity (95% vs. 78% vs. 94%)
  • And the lowest abnormal interpretation rate (5% vs. 23% vs. 6%)

The results show that while AI can help radiologists interpret screening mammography for most women, at present it can’t compensate for mammography’s low sensitivity in women with dense breast tissue.

In an editorial, breast radiologists Gary Whitman, MD, and Stamatia Destounis, MD, observed that supplemental imaging of women with dense breasts is getting more attention as the FDA prepares to implement breast density notification rules in September. 

  • They recommended follow-up studies with other AI algorithms, more patients, and a longer follow-up period. 

The Takeaway

As with a recent study on AI and teleradiology, the current research is a good step toward real-world evaluation of AI for a specific use case. While AI in this instance didn’t improve mammography’s sensitivity in women with dense breast tissue, it could carve out a role reducing false positives for these women who get mammography and ultrasound.

US Tomo for Dense Breasts

What’s the best way to provide supplemental imaging when screening women with dense breasts? A new study this week in Radiology offers support for a newer method, whole-breast ultrasound tomography. 

It’s well-known by now that dense breast tissue presents challenges to traditional X-ray-based mammography.

  • In fact, mammography screening’s mortality reduction is far lower in women with dense breasts compared to nondense breasts (13% vs. 41%). 

A variety of alternative technologies have been developed to provide supplemental imaging for women with dense breasts, from handheld ultrasound to breast MRI to molecular breast imaging. 

  • One supplemental technology is whole-breast tomography, developed by Delphinus Medical Technologies; the firm’s SoftVue 3D system was approved by the FDA in 2021 as an adjunct to full-field digital mammography for screening women with dense breast tissue. 

With SoftVue, women lie prone on a table with the breast stabilized in a water-filled chamber that provides coupling of sound energy between the breast and a ring transducer that scans the entire breast in 2-4 minutes.

  • Unlike handheld ultrasound, the scanner provides volumetric coronal images that provide a better view of the fat-glandular interface, where many cancers are located.

SoftVue’s performance was analyzed by researchers from USC and the University of Chicago in a retrospective study funded by Delphinus. 

  • They performed SoftVue scans along with digital mammography on 140 women with dense breast tissue from 2017 to 2019; 36 of the women were eventually diagnosed with cancer. 

In all, 32 readers interpreted the scans, comparing the performance of FFDM with ultrasound tomography to FFDM alone, finding … 

  • Better performance with FFDM + ultrasound tomography (AUC=0.60 vs. 0.54)
  • An increase in sensitivity in women with mammograms graded as BI-RADS 4 (suspicious), (37% vs. 30%) 
  • No statistically significant difference in sensitivity in BI-RADS 3 cases (probably benign), (40% vs. 33%, p=0.08)
  • A mean of 3.3 more true-positive and 0.9 false-negative findings per reader with ultrasound tomography, a net gain of 2.4

The Takeaway

The findings indicate that ultrasound tomography could become a new supplementary tool for imaging women with dense breasts. They are also a shot in the arm for Delphinus, which as a smaller vendor has the challenge of competing with large multinational OEMs that also offer technologies for supplemental breast screening. 

Fine-Tuning AI for Breast Screening

AI has shown in research studies it can help radiologists interpret breast screening exams, but for routine clinical use many questions remain about the optimal AI parameters to catch the most cancers while generating the fewest callbacks. Fortunately, a massive new study out of Norway in Radiology: Artificial Intelligence provides some guidance. 

Recent research such as the MASAI trial has already demonstrated that AI can help reduce the number of screening mammograms radiologists have to review, and for many low-risk cases eliminate the need for double-reading, which is commonplace in Europe. 

  • But growing interest in breast screening AI is tempered by the field’s experience with computer-aided detection, which was introduced over 20 years ago but generated many false alarms that slowed radiologists down. 

Fast forward to 2024. The new generation of breast AI algorithms seems to have addressed CAD’s shortcomings, but it’s still not clear exactly how they can best be used. 

  • Researchers from Norway’s national breast screening program tested one mammography AI tool – Lunit’s Insight MMG – in a study with data obtained from 662k women screened with 2D mammography from 2004 to 2018. 

Researchers tested AI with a variety of specificity and sensitivity settings based on AI risk scores; in one scenario, 50% of the highest risk scores were classified as positive for cancer, while in another that threshold was set to 10%. The group found …

  • At the 50% cutoff, AI would correctly identify 99% of screen-detected cancers and 85% of interval cancers. 
  • At the 10% cutoff, AI would detect 92% of screen-detected cancers and 45% of interval cancers 
  • AI understandably performed better in identifying false-positive cases as negative at the 10% threshold than 50% (69% vs. 17%)
  • AI had a higher AUC than double-reading for screen-detected cancers (0.97 vs. 0.88)

How generalizable is the study? It’s worth noting that the research relied on AI of 2D mammography, which is prevalent in Europe (most mammography in the US employs DBT). In fact, Lunit is targeting the US with its recently cleared Insight DBT algorithm rather than Insight MMG. 

The Takeaway

As with MASAI, the new study offers an exciting look at AI’s potential for breast screening. Ultimately, it may turn out that there’s no single sensitivity and specificity threshold at which mammography AI should be set; instead, each breast imaging facility might choose the parameters they feel best suit the characteristics of their radiologists and patient population. 

USPSTF’s Mammography Letdown?

Last year’s relief that the USPSTF would lower its recommended starting age for breast screening to 40 gave way to frustration this week that the group did not go farther in its final decision on mammography recommendations. 

In a series of papers in JAMA journals this week, the USPSTF tackled a range of breast screening issues, from the age at which screening should start to whether modalities like ultrasound and MRI should be used to supplement conventional mammography.

That was the good news. The bad news is that breast screening advocates mostly got shut out on a variety of other issues, with the USPSTF … 

  • Advising that breast screening be conducted biennially (every two years), rather than annually as most women’s imaging advocates would prefer
  • Declining to raise the recommended upper limit for screening from 74 to 79
  • Declining to recommend supplemental screening with MRI or ultrasound for women with dense breast tissue, even as women express frustration with the lack of reimbursement for these exams

On the positive side, the USPSTF finally weighed in on DBT, stating that the 3D mammography technology is equivalent to digital mammography for breast screening. 

  • But in another disappointment, the group said it couldn’t find any studies stating that DBT was better than 2D digital mammography. 

Given the fierce battles that have been fought over screening guidelines in the last 15 years, what made the USPSTF change its mind on mammography’s starting age? 

  • One big factor is the 2% annual rise in breast cancer incidence in women in their 40s from 2015 to 2019; the higher mortality rates among Black women was another issue (see story below in The Wire).

The Takeaway

The USPSTF’s move to lower its recommended starting age for screening mammography is a welcome – if overdue – change for women, who for 15 years have borne the brunt of the group’s conservative approach to guideline formation. The question remains, is the USPSTF making the same mistake all over again when it comes to supplemental imaging and annual screening? And how long will women have to wait this time until it sees the light?

Breast Screening Goes Green

Earth Day will be celebrated on April 22, and the event is a good opportunity to step back and take a look at medical imaging’s (not insignificant) contribution to climate change. Fortunately, a new paper in Health Policy details how one imaging service – breast screening – can be made more environmentally friendly. 

Previous studies have documented that medical imaging is a substantial contributor to greenhouse gas emissions, given the massive energy consumption required to keep all that big iron humming. 

  • Researchers have recommended a variety of solutions to reduce radiology’s environmental footprint, from powering equipment down overnight to switching to alternative energy sources to power medical facilities. 

The new study gets even more specific, analyzing the greenhouse emissions inherent in cancer screening – in particular patient travel – and offering ways to make it more planet-friendly. 

  • Researchers reviewed cancer screening programs in the Italian region of Tuscany, quantifying the CO2 emissions for different screening services. 

Greenhouse gas emissions could be cut dramatically by switching from a provider-centric model that requires patients to travel to centralized screening facilities to one in which mobile vans were sent into the field. Using model calculations for mammography screening, they found that in one district alone …

  • Breast screening was the most polluting cancer screening service, mostly because it had the highest number of invitees (3.4k women) traveling for screening
  • Institution-based breast screening generated CO2 emissions of 35,870 kgCO2-eq/km annually
  • Mobile breast screening had emissions of 805 kgCO2-eq/km – just 2.2% of emissions from site-based screening

The study is unique in that it views sustainability and environmental pollution as a healthcare issue that’s fully within the purview of providers to address. 

The Takeaway

The new study outlines a holistic approach to healthcare services that – right now – many US providers might believe is outside the scope of their operations. But as Earth Day approaches, it’s worth at least considering how in years to come healthcare could be delivered within a broader context of social and environmental stewardship.

MASAI Gets Even Better at ECR 2024

One of the biggest radiology stories of 2023 was the release of impressive interim results from the MASAI study, a large-scale trial of AI for breast screening in Sweden. At ECR 2024, MASAI researchers put an emphatic cap on the conference by presenting final data indicating that AI could have an even bigger impact on mammography screening than we thought. 

If you remember, MASAI’s interim results were published in August in Lancet Oncology and showed that ScreenPoint Medical’s Transpara AI algorithm was able to reduce radiologist workload by 44% when used as part of the kind of double-reading screening program that’s common in Europe.

  • Another MASAI finding was that AI-aided screening had a 20% higher cancer detection rate than conventional double-reading with human radiologists, but the difference was not statistically significant. 

That’s all changed with the final MASAI results, presented at ECR on March 2 by senior author Kristina Lång, MD, of Lund University.

  • Lång presented data from 106k participants who were randomized to either screening with Transpara V. 1.7 or conventional double reading without AI.

Transpara triaged mammograms by giving them a risk score of 1-10, and only those classified as high risk received double reading; lower-risk mammograms got a single human reader. In the final analysis, AI-aided screening … 

  • Had a 28% higher cancer detection rate per 1k women (6.4 vs. 5.0), a difference that was statistically significant (p=0.002)
  • Detected more cancers 10-20 mm (122 vs. 79)
  • Detected more cancers of non-specific histologic type (204 vs. 155)
  • Detected 20 more non-luminal A invasive cancers and 12 more DCIS grade 3 lesions

The Takeaway

When combined with the Lancet Oncology data, the new MASAI results indicate that AI could enable breast radiologists to have their cake and eat it too: a lower workload with higher cancer detection rates. 

When Access to Screening Isn’t Enough

A new study published this week in JAMA Network Open indicates that – even when women have access to breast screening – other factors can limit mammography’s life-saving impact. Researchers found that women with more unmet social needs had lower breast screening rates and higher rates of advanced disease – even if they had access to a mammography center. 

Research into social determinants of health – the racial, demographic, and environmental factors that can affect the quality of a person’s health – have gained steam in the last several years.

In the new study, researchers noted that unmet social needs can include housing instability, social isolation, food insecurity, and transportation challenges, and these needs can occur even in high-income areas with access to screening mammography. 

  • They studied the issue in Miami-Dade County, Florida, where all women 200% below the poverty line have access to no-cost screening mammography at safety net hospitals – in theory removing cost as a barrier to breast screening.

Researchers studied 336 women who filled out a survey on social needs; of these, 62% self-identified as Hispanic, 19% as Black, and 19% as White, and 76% had screening mammograms. Researchers found a lower odds ratio for getting a mammogram due to …

  • An increasing number of unmet social needs (OR=0.74)
  • Increasing age at diagnosis (OR=0.92)

Patients were also more likely to present with late-stage disease if they …

  • Had two or more unmet social needs (33% vs. 18%)
  • Had problems with their home utilities (17% vs. 5%) or childcare access (12% vs. 3%)
  • Were presenting to a safety net hospital (31% vs. 18%)

The authors noted that although no single unmet social need was found to have a statistically significant impact on screening mammography rates, multiple needs piling up could “overwhelm” patients so they can’t find the time to schedule preventive health check-ups. 

The Takeaway

The new findings offer a more complex view of breast screening disparities beyond just access to mammograms. Public health authorities and hospitals providing women’s health services may need to offer screening of at-risk patients and a broader range of services in order to make sure that the life-saving benefits of mammography are enjoyed on a wider – and more equitable – scale.

Get every issue of The Imaging Wire, delivered right to your inbox.

You might also like..

Select All

You're signed up!

It's great to have you as a reader. Check your inbox for a welcome email.

-- The Imaging Wire team

You're all set!