Molecular MRI Adds Certainty to Cancer Diagnosis

MRI has become an important tool in the detection, diagnosis, and treatment planning for many cancers, especially solid tumors. However, up until now, a lack of specificity has held back the full potential of MRI.  

While MRI is very good at identifying areas of interest, factors such as infection, benign tumors, post-traumatic areas, and inflammation can all increase vascularity and, therefore, enhancement of contrast and signal changes.  

  • As a result, MRI has a high rate of false positives – findings that may be flagged as something of concern but that are not necessarily malignant lesions.  

This lack of accuracy results in clinical care teams performing too many confirmatory biopsies, with most being benign.

Now a novel class of molecular imaging contrast agents developed by Imagion Biosystems brings a new level of specificity to MRI. 

  • The company’s MagSense imaging agents have the potential to improve the clinical utility of the large installed base of MRI systems across the globe through improved accuracy of interpretation, avoiding biopsies of benign lesions, driving earlier intervention and improving outcomes and quality of life.

Unlike gadolinium-based agents that non-specifically enhance tissue vascularity regardless of cause, MagSense imaging agents target receptors on cancer cells.  

  • By combining magnetic nanoparticles that have high susceptibility and r2 relaxivity with cancer-specific biomarkers, molecular MRI becomes possible.

Imagion’s superparamagnetic iron oxide nanoparticles are coated with a cancer-specific targeting moiety, such as an antibody or peptide.

  • The cancer biomarker molecule causes the particles to bind to target-specific cancer cells, if present. If the lesion in question is not the target cancer, the particles do not bind.

Where the imaging agent has become attached to the tissue, the nanoparticles produce an identifiable change in MRI signal. 

  • This signal is easily detected by radiological review and can be quantitatively assessed.

Imagion has developed cancer-specific contrast imaging agents for HER2 breast cancer, prostate cancer, and ovarian cancer, and the MagSense platform can be adapted for any type of cancer for which there is a targeting moiety.  

  • Imagion is now preparing to initiate a multisite phase 2 study in the U.S. in HER2+ breast cancer patients to optimize imaging parameters and compare MagSense imaging to the standard of care.  

The Takeaway

Molecular-specific imaging agents like the MagSense technology from Imagion Biosystems create the opportunity for molecular MRI to fundamentally change how radiologists detect and monitor cancers. 

The company is publicly traded (ASX:IBX) and is looking to expand its U.S. investor base as it advances through its clinical programs. To become involved as an investigator or investor or to learn more visit their website.

SIIM 2025 Video Highlights

The annual meeting of the Society for Imaging Informatics in Medicine convened in Portland, Oregon, with members of radiology’s imaging IT community joining together to discuss the latest trends in enterprise imaging, AI, and more. 

As with other recent radiology meetings, AI dominated the discussion at SIIM 2025. But AI’s potential to revolutionize radiology has been tempered by nagging concerns about slow clinical adoption and questionable return on investment for healthcare providers.

Regulatory turbulence is also a concern, highlighted by recent changes implemented by the Trump Administration at the FDA. Some industry observers have speculated that AI approvals have slowed down, while others point out that the FDA – which has lagged other countries in approving new AI algorithms – perhaps might benefit from a fresh approach in how it regulates AI.

The Takeaway 

In the end, SIIM 2025 can be chalked up as another success for the organization. While attendance seemed to be down slightly (most likely due to the West Coast location and pre-Memorial Day timing), the society pointed out that the number of vendor exhibitors at SIIM 2025 exceeded 100 for the first time in years – a sure sign of a healthy imaging IT industry. 

Check out our SIIM 2025 videos below or visit the Shows page on our website, as well as our YouTube and LinkedIn pages, and keep an eye out for our next Imaging Wire newsletter on Thursday.

Keeping Pace with Volume: 7 Strategies from ASNR 2025

This week weary neuroradiologists descended upon the City of Brotherly Love for the annual meeting of the American Society of Neuroradiology (ASNR). The field is facing mounting pressure as increasing imaging volumes continue to outstrip radiologists’ capacity. 

Dealing with growing volume was a recurring theme throughout ASNR 2025, with a range of proposed solutions, including the seven strategies below:

  1. Acquisition automation for higher efficiency and reduced technical requirement: A talk by Lawrence Tanenbaum, MD, featured a number of AI solutions to ease technologist training requirements, including smart protocoling, automated patient positioning, one-touch exams without parameter adjustments, and on-device quality assurance and motion correction to cut down repeat exams.
  2. Accelerated acquisitions as the standard-of-care: Every manufacturer – from established vendors to emerging startups – showcased deep learning-based reconstruction. As Suzie Bash, MD, put it, “Deep learning reconstruction is becoming standard-of-care across the industry.”
  3. Improving radiologist reading efficiency with AI and workflow management: A noticeable trend at ASNR 2025 was fewer talks focused solely on algorithm accuracy and more emphasis on how AI impacts reading efficiency. Accuracy remains critical, but adoption increasingly hinges on demonstrating workflow efficiency.
  4. Streamlining new algorithm rollout using integrated platforms: In a session on AI adoption and evaluation, Reza Forghani, MD, PhD, called for increased use of integrated platforms to allow for easier algorithm deployment, validation, and monitoring.
  5. Rising reliance on international medical graduates (IMGs): Mina Hesami, MD, presented on the rising contribution of IMGs to US radiology, noting a steady increase in the proportion of residency slots, fellowships, and leadership roles held by international graduates – with radiology seeing faster growth than most other medical specialties.
  6. Expanding the radiology workforce with mid-level providers: Another proposed strategy is offloading specific tasks to mid-level providers. While still controversial in radiology, this model is gaining traction in response to workforce shortages.
  7. Sustainability by reducing emissions and environmental impact: Several ASNR sessions addressed environmental sustainability. From simply turning off idle scanners to using AI to reduce contrast doses, radiologists are beginning to reckon with the environmental impact of rising scan volumes.

The Takeaway

The sessions at ASNR 2025 indicate that while there’s a lot of buzz around AI, radiologists are considering every tool at their disposal to keep up with rising imaging volumes. AI will play a role, but likely won’t be sufficient alone to keep up with increasing volumes.

T. Campbell Arnold is a research scientist at Subtle Medical and the managing editor of RadAccess.

Imaging Workload Jumps with Higher Use of CT, MRI

Radiology’s shift to more advanced modalities like CT and MRI is increasing the burden on radiologists to interpret more complex exams. A new study in JACR documents the trend, finding that radiologist workload for inpatient imaging has risen sharply over the last 10 years. 

Like many physicians, radiologists are feeling burned out from rising patient workload, personnel shortages, and declining reimbursement. 

  • But radiology has the added burden of being one of healthcare’s most technology-focused specialties, with new imaging modalities giving them cooler tools to work with, but at the cost of steadily increasing exam complexity.

Researchers from Brigham and Women’s Hospital have been tracking inpatient imaging utilization for the past 40 years, and the new paper provides the latest update. 

  • They calculated inpatient imaging volume at Brigham and Women’s from 2012 to 2023, during which 896k imaging exams were performed.  

Results for the study were as follows …

  • Total annual inpatient imaging volume grew 17% over 10 years (102k to 119k exams).
  • Total imaging exams per patient admission (adjusted by case mix and disease severity) fell 20% due to declines in X-ray, ultrasound, and nuclear medicine.
  • But imaging exams per patient admission grew for CT (19%) and MRI (21%).
  • Leading to growth in CT and MRI’s combined share of all radiology global RVUs (62% to 75%).
  • Hospital length of stay rose 32% (5.6 to 7.4 days), possibly due to the COVID-19 pandemic. 

What does it all mean? Basically, the number of inpatient imaging exams per patient is declining when adjusted for disease severity, but radiologists are still having to work harder because the studies are more complex. 

  • Imaging could also be shifting from the inpatient setting to outpatient centers due to reimbursement changes aimed at shifting exams to lower-cost settings than hospitals.

One big question with the new study is the degree to which the COVID-19 pandemic skewed the results compared with previous years. 

  • The pandemic may have spurred more use of CT, especially given its value in providing a definitive diagnosis of SARS-CoV-2 infection. 

The Takeaway

If you feel like you’re working harder than ever, the new findings show that you’re not crazy. And given radiology’s breakneck pace of innovation, it’s not likely the trends revealed in the new study will let up any time soon.

MRI in Paradise – News from ISMRM 2025

The global MRI community this week traveled to paradise to convene its annual meeting of the International Society for Magnetic Resonance in Medicine. If you were one of the lucky ones to be in attendance in Honolulu, Hawaii for ISMRM 2025, you were treated to some of the latest news in radiology’s most powerful modality. 

As has been the case at other radiology meetings, AI took center stage in Honolulu. 

  • AI has multiple use cases in MRI, from helping radiologists interpret images more efficiently to accelerating scans and upscaling lower-field images to resemble high-field exams.

Just a few of the news highlights from ISMRM 2025 are below …

  • Using AI to interpret prostate MRI reduced reading times by 48% (250 to 120 seconds) while improving the diagnostic performance of both experienced and less experienced radiologists. 
  • AI of thyroid T2-weighted neck MRI scans demonstrated good accuracy (87%) for nodules larger than 1 cm, indicating a possible role for screening and monitoring.
  • Researchers presented progress in creating brain charts of white matter based on MRI scans of 24k cognitively healthy people that can be used to track normal and abnormal brain development.
  • Brain MRI showed that lower brain volumes in people with coronary artery disease were associated with worse aerobic fitness and higher BMI, revealing a link between cardiovascular and brain health. 
  • Chinese researchers showed their work on PMEEN, a multimodality brain scanner that combines PET, MRI, EEG, eye-tracking, and functional near-infrared spectroscopy. 
  • A Spanish team demonstrated research on a low-field PET/MRI scanner with focused ultrasound capability for therapeutic applications.
  • AI could be used during abbreviated breast MRI screening scans to convert women mid-exam to a full MRI protocol if abnormalities are detected.
  • 7T MRI was used to detect iron deposits in the brain, which could be a marker for Alzheimer’s disease.
  • MRI with an ultrashort echo time protocol could be an alternative to CT for following up lung nodules.
  • Researchers presented a deep learning-based approach to generating synthetic contrast-like MR images without gadolinium. 
  • MGH researchers showed progress in developing a 136mT portable MRI scanner for bedside brain scanning of preterm neonates.

The Takeaway

The rapid proliferation of news about AI-based MRI at ISMRM 2025 suggests its own vision of paradise – a world in which MRI can be deployed more widely than ever before, where radiologists with AI assistance detect disease in many cases before symptoms even occur. We can only dream.

AI Boosts DBT in Detecting More Breast Cancer

A real-world study of AI for DBT screening found that AI-assisted mammogram interpretation nearly doubled the breast cancer detection rate. Radiologists using iCAD’s ProFound AI software saw sharp improvements across multiple metrics. 

Mammography screening has quickly become one of the most promising use cases for AI. 

  • Multiple large-scale studies published in 2024 and 2025 have documented improved radiologist performance when using AI for mammogram interpretation, with the largest studies performed in Europe.

Another new technology changing mammography screening is digital breast tomosynthesis, which is being rapidly adopted in the U.S. 

  • DBT use in Europe is occurring more slowly, so questions have arisen about whether AI’s benefits for 2D mammography would also be found with 3D systems.

To investigate this question, researchers writing in Clinical Breast Cancer tested radiologist performance for DBT screening before and after implementation of iCAD’s ProFound V2.1 AI algorithm in 2020 at Indiana University. 

  • Interestingly, the pre-AI period included use of iCAD’s older PowerLook CAD software. 

Across the 16.7k DBT cases studied, those with AI saw …

  • A sharp improvement in cancer detection rate per 1k exams (6.1 vs. 3.7).
  • A decline in the abnormal interpretation rate (6.5% vs. 8.2%).
  • Higher PPV1 (rate that abnormal mammograms would be positive) (8.8% vs. 4.2%).
  • Higher PPV3 (rate that biopsies would be positive) (57% vs. 32%). 
  • Higher specificity (94% vs. 92%).
  • No statistically significant change in sensitivity.

The findings on sensitivity are curious given AI’s positive impact on other interpretation metrics.

  • Researchers postulated that there was higher breast cancer incidence in the post-AI implementation period, which could have been caused by AI finding cancers that were missed in the period without AI.

The Takeaway

The radiology world has seen multiple positive studies on AI for mammography, but most of these have come from Europe and involved 2D mammography not DBT. The new results suggest that AI’s benefits will also transfer to DBT, the technology that’s becoming the standard of care for breast screening in the U.S.

How Do Patients Feel about Mammo AI?

As radiology moves (albeit slowly) to adopt clinical AI, how do patients feel about having their images interpreted by a computer? Researchers in a new study in JACR queried patients about their attitudes regarding mammography AI, finding that for the most part the jury is still out. 

Researchers got responses to a 36-question survey from 3.5k patients presenting for breast imaging at eight U.S. practices from 2023-2024, finding …

  • The most common response to four questions on general perceptions of medical AI was “neutral,” with a range of 43-51%. 
  • When asked if using AI for medical tasks was a bad idea, more patients disagreed than agreed (28% vs. 25%). 
  • Regarding confidence that medical AI was safe, patients were more dubious, with higher levels of disagreement (27% vs. 20%).
  • When asked if medical AI was helpful, 43% were neutral but positive attitudes were higher (35% vs. 19%).

The Takeaway

Much like clinicians, patients seem to be taking a wait-and-see attitude toward mammography AI. The new survey does reveal fault lines – like privacy and equitability – that AI developers would do well to address as they work to win broader acceptance for their technology. 

We’re testing a new format today – let us know if you prefer two shorter Top Stories or one longer Top Story with this quick survey!

Function Buys Ezra to Add Labs to Screening

In a major development in the wellness-screening segment, diagnostic lab screening company Function Health acquired full-body MRI firm Ezra. The companies plan to offer wellness screening that combines lab tests with imaging.

Ezra launched in 2018 with an initial focus on prostate MRI but soon expanded into full-body MRI screening.

  • The company has developed AI-enhanced image acceleration algorithms to acquire MRI scans in shorter time slots, enabling it to drive down costs to consumers.

Ezra’s scans are currently available at 100 U.S. locations with the goal of 1k sites in coming months (the company doesn’t run its own centers, but rather partners with existing imaging providers like AMRIC Health). 

  • Function Health has a similar strategy but in the clinical diagnostics space, offering blood tests available through some 2.2k Quest Diagnostics locations.

Function and Ezra believe that combining lab tests with imaging will support a new level of wellness screening that when coupled with AI will be even more predictive.

The Takeaway

The combination of Function Health and Ezra is an interesting wrinkle in the wellness screening space that promises to make screening even more comprehensive by acquiring both lab and imaging data. The question is whether other screening providers will feel compelled to follow suit.

We’re testing a new format today – let us know if you prefer two shorter Top Stories or one longer Top Story with this quick survey!

Integrated Solutions for Managing Incidental CAC Findings

The rising prominence of coronary artery calcium as a prognostic marker for heart disease has created an emerging challenge for radiologists: how should they manage incidental CAC findings discovered on routine CT exams? Fortunately, new industry collaborations are making it possible to deliver CAC reports to clinicians without disrupting workflow. 

Routine CT scans are revealing data beyond their original diagnostic intent.

  • AI solutions – such as AVIEW CAC from Coreline Soft – play a pivotal role in identifying risks for cardiovascular disease, osteoporosis, and metabolic disorders – all from a single scan.

AI allows one CT scan to assess lung, cardiovascular, and skeletal health, improving diagnosis and treatment planning.

One imaging services provider that has put AVIEW CAC into use is 3DR Labs, which has been actively integrating the solution into its nationwide clinical network.

  • The partnership enables 3DR Labs radiologists to generate consistent, high-quality CAC reports directly within PACS, while significantly reducing turnaround times.

3DR Labs is finding that AVIEW CAC optimizes workflow efficiency and significantly reduces the time required for CAC assessment. 

  • It also ensures that radiologic technologists can perform quick QA checks, enhancing consistency and reliability in the delivery of the report.

The latest generation of the FDA-cleared AVIEW CAC features an upgraded user interface and advanced batch-scoring functionality. 

  • 3DR Labs is now working to expand AI-driven insights into lung and neuroimaging through Coreline’s broader AVIEW platform (AVIEW ILA for interstitial lung abnormalities and AVIEW BAS for brain CT).

Beyond diagnostic imaging, this collaboration supports growing demands for cost-efficiency in healthcare. 

  • As U.S. insurers and government agencies recognize the ROI potential of early AI detection, platforms like AVIEW CAC offer scalable, high-performance solutions that lower costs and streamline care delivery.

3DR Labs has also highlighted Coreline Soft’s role as a founding partner in AI Labs, the company’s vendor-neutral platform to deliver the latest AI innovations to radiology workflows.

The Takeaway

New partnerships like the collaboration between Coreline Soft and 3DR Labs are advancing the future of AI in radiology – focusing on automation, early detection, and better patient outcomes through powerful, clinically validated technologies. Such partnerships not only reflect increasing adoption of AI in U.S. healthcare but set the stage for global transformation in diagnostic imaging.

Imaging Cost Variation Narrows after Transparency Rule

Why do costs for medical imaging procedures vary so much between U.S. hospitals? This is one of radiology’s most enduring mysteries, but a new study in JACR shows that variation may be narrowing in the wake of federal transparency rules. 

It’s common knowledge that patients (and payors) can be charged differently for the same healthcare procedure based on the facility where it’s conducted. 

  • Previous studies have found that patients are surprisingly unclear on how much their imaging exams will cost them.

To clear things up, CMS in 2021 rolled out transparency rules for medical procedures that require healthcare providers to share cost information with patients. 

  • The rules specified 300 “shoppable” services, including 13 imaging procedures like mammography, abdominal ultrasound, and head CT and MRI scans.

But has the rule been effective in reducing cost variation? 

  • The new study tackles that question head-on, analyzing cost changes from 2023 to 2024 for three common outpatient imaging exams – MRI brain studies with and without contrast, chest radiographs, and nuclear medicine gastric emptying exams.

Researchers tracked prices for the three exams at 26 U.S. pediatric hospitals, finding …

  • The variation coefficient for all three procedures declined 19% (from 27% to 21%).
  • The greatest decline in variation was for nuclear medicine gastric emptying (-7.2%) while the smallest was for chest radiography (-2.2%).
  • Overall prices rose 6.7% for payor-specific negotiated rates even as variation declined.
  • Prices increased 7.7% for nuclear medicine gastric emptying, 6.6% for brain MRI, and 2.6% for chest radiography. 

Among the five commercial payors tracked (Aetna, Blue Cross Blue Shield, Cigna, Humana, and UnitedHealth), BCBS moved from having the second-lowest prices in 2023 to the lowest in 2024, while Humana was the highest-priced insurer in both years. 

The Takeaway

The new results are a classic good news/bad news scenario for radiology. While the reduction in price variation is a positive trend, it appears that the growth in healthcare costs is an inexorable force that even the best-intended legislation can’t derail. 

Get every issue of The Imaging Wire, delivered right to your inbox.

You might also like..

Select All

You're signed up!

It's great to have you as a reader. Check your inbox for a welcome email.

-- The Imaging Wire team

You're all set!