Bridging Quality and Efficiency: Why Radiology Groups Are Adopting AI for Mammography Workflows

By Dr. Roger Yang, President, University Radiology Group, and Mo Abdolell, CEO, Densitas

Radiology groups offering mammography services operate under ever-tightening demands, including MQSA EQUIP and ACR accreditation standards. Manual case selection, cumbersome paperwork, and lengthy review cycles often divert radiologists and technologists from what matters most – patient care.

But change is coming. By leveraging AI and mammography workflow automation, private radiology groups are reshaping how they manage quality, reduce administrative overhead, and advance patient care. 

AI-powered platforms can significantly streamline mammography quality management by:

  • Automating case selection for EQUIP reviews.
  • Measuring positioning metrics in near real-time.
  • Centralizing documentation to simplify compliance.

Some practices have reported up to a 90% reduction in EQUIP review time and 80% workload reduction in ACR accreditation using AI. But time savings are only part of the story.

Rather than waiting months for sporadic audits, technologists gain instant insights into positioning accuracy. This rapid feedback loop…

  • Accelerates targeted training.
  • Encourages continuous quality improvement.
  • Empowers technologists to self-monitor performance and identify gaps earlier. 

Today’s vendor-agnostic AI solutions integrate seamlessly with diverse imaging systems across multiple sites. 

  • Standards-based platforms can grow from a single mammography unit to dozens, helping radiology groups expand without adding complexity.

In a crowded marketplace, radiology practices that adopt AI-driven mammography quality management and automation stand out as forward-thinking leaders. Advantages include…

  • Enhancing patient perception: Offering efficient exams and high-quality imaging underscores a commitment to excellence, boosting satisfaction and referrals.
  • Leveraging analytics: Aggregated data on image quality and positioning helps leadership identify trends, optimize workflows, and highlight innovation.
  • Attracting top talent: Skilled technologists and radiologists gravitate toward practices with cutting-edge tools.

By integrating AI early, private practices can differentiate themselves, paving the way for growth and success.

Successful AI adoption and mammography workflow automation relies on more than just software. It requires:

  • Deep mammography expertise from vendors.
  • Robust training programs for staff.
  • Change training programs for staff.
  • Responsive customer support that fosters trust.

Mammography workflow automation cuts administrative burdens, curtails physician burnout, and speeds accreditation. Technologists receive clear, timely feedback, improving morale and performance. 

  • Meanwhile, patients benefit from streamlined workflows and consistent image quality, reinforcing trust in the practice.

The Takeaway

By embracing AI-driven mammography workflow automation and quality management, radiology groups can stay focused on delivering exceptional patient care while meeting regulatory requirements. This strategic investment propels private practices toward sustained growth and innovation, securing a competitive edge in a rapidly evolving healthcare landscape. Learn more.

Will FDA Staff Cuts Slow AI Adoption?

The Trump Administration’s campaign to cut the federal workforce arrived at the FDA last weekend – in particular its division regulating AI in healthcare. Multiple staff cuts were reported at the Center for Devices and Radiological Health, which had been in the midst of a major overhaul of AI regulation. 

A February 15 article in STAT News first reported the layoffs, which as with other recent staff reductions concentrated on FDA employees with probationary status and was part of a larger initiative that has also affected the CDC and NIH. 

The rapid growth of medical AI has had a major impact on the center, which as of its last report had given regulatory authorization to over 1k AI-enabled devices (76% of which are for radiology). 

  • To deal with the deluge, CDRH reportedly had been hiring many new staffers who were still on probationary status, making them targets for layoffs (permanent federal employees have civil service protections that make them harder to fire). 

FDA also has been retooling its regulatory approach to AI with new initiatives that reflect the fact that AI products continue learning (and changing) after they’ve been approved, and thus require more aggressive post-market surveillance than other medical devices…

So what impact – if any – will the layoffs have on the rapidly growing medical AI segment? 

  • The FDA may simply scale back its new AI initiatives and regulate the field under more traditional avenues that have served the medical device industry well for decades.

In another scenario, the FDA’s frenzied pace of AI approvals and initiatives could slow as the agency struggles to handle a growing number of product submissions with less staff. 

The Takeaway

The FDA layoffs couldn’t have come at a worse time for medical AI, which is on the cusp of wider clinical acceptance but still suffers from shaky confidence and poor understanding on the part of both providers and patients (see story below). The question is whether providers, organized radiology, or developers themselves will be able to step into the gap being left.

AI Enables Single-Click Cardiac MRI

Cardiac MRI is one of the most powerful imaging tools for assessing heart function, but it’s difficult and time-consuming to perform. Could automated AI planning offer a solution? A new research paper shows how AI-based software can speed up cardiac MRI workflow

Cardiac MRI has a variety of useful clinical applications, generating high-resolution images for tissue characterization and functional assessment without the ionizing radiation of angiography or CT.

  • But cardiac MR also requires highly trained MR technologists to perform complex tasks like finding reference cardiac planes, adjusting parameters for every sequence, and interacting with patients – all challenges in today’s era of workforce shortages. 

Cardiac MRI’s complexity also increases the number of clicks required by technologists to plan exams. 

  • This can introduce scan errors and produces inter-operator variability between exams. 

Fortunately, vendors are developing AI-based software that automates cardiac MR planning – in this case, Siemens Healthineers’ myExam Cardiac Assist and AI Cardiac Scan Companion. 

  • The solution enables single-click cardiac MR planning with a pre-defined protocol that includes auto-positioning to identify the center of the heart and shift the scanner table to isocenter, as well as positioning localizers to perform auto-align without manual intervention. 

How well does it work in the real world? Researchers tested the AI software against conventional manual cardiac MR exam planning in 82 patients from August 2023 to February 2024, finding that automated protocols had … 

  • A lower mean rate of procedure errors (0.45 vs. 1.13).
  • A higher rate of error-free exams (71% vs. 45%).
  • Shorter duration of free-breathing studies (30 vs. 37 minutes).
  • But similar duration of breath-hold exams (42 vs. 44 minutes, p=0.42).
  • While reducing the error gap between more and less experienced technologists. 

In their discussion of the study’s significance, the researchers note that most of the recent literature on AI in medical imaging has focused on its use for image reconstruction, analysis, and reporting.

  • Meanwhile, there’s been relatively little attention paid to one of radiology’s biggest pain points – exam preparation and planning. 

The Takeaway

The new study’s results are exciting in that they offer not only a method for performing cardiac MR more easily (potentially expanding patient access), but also address the persistent shortage of technologists. What’s not to like?

VC Investors Pivot to Quality

Venture capital investors in digital health firms pivoted to quality in 2024, with fewer deals done but a higher median deal size compared to 2023. That’s according to a new report from market analysis firm CB Insights that also documented a record high for both the number and value of AI-focused deals.

Digital health investment has fluctuated in the years since the COVID-19 pandemic, with the number of deals hitting a peak in 2021 but then receding. 

  • The first half of 2024 was particularly slow in the radiology AI sector, but funding seemed to accelerate in the second half, with more and larger deals getting done.

So where did venture capital funding for digital health end up for all of 2024? The CB Insights report found that relative to 2023 there was …

  • A 23% drop in the number of digital health funding rounds, to 1.2k deals, the lowest number since 2014, versus 1.6k deals.
  • A 3% increase in the total dollar value of investments, to $15.6B versus $15.1B.
  • A median deal size of $5.3M, up 39% versus $3.8M.
  • AI-focused companies secured 42% of funding and 31% of deals, up from 37% and 26%. 
  • The biggest imaging-related deal was a $106M Series C round raised by cardiac AI developer Cleerly.

The numbers are a sign of VC investors looking for quality companies that meet heightened benchmarks.

  • Investors want demonstrated progress in terms of clinical validation, commercial traction, and regulatory readiness before they’ll sign checks. 

The Takeaway

The new report illustrates the opportunities and challenges of the current investment environment for digital health. AI developers will find the wind shifting in their favor, but they will need to do their homework and show real progress in the clinical, commercial, and regulatory spaces before securing venture capital investment.

AI Guides Lung Ultrasound

Healthcare professionals with no experience in lung ultrasound were able to acquire diagnostic-quality scans comparable to those of experts thanks to AI guidance in a new paper in JAMA Cardiology

Ultrasound is one of the most versatile and cost-effective imaging modalities, but it is operator-dependent and many of its more challenging clinical applications require highly trained personnel. 

  • Echocardiography AI has already been shown to help novice healthcare personnel improve their skill to that of expert users – could AI also have applications in other areas, like lung ultrasound? 

To find out, researchers used Caption Health’s AI technology to guide lung ultrasound scans in 176 patients with clinical concerns for pulmonary edema from July to December 2023. 

  • Patients were scanned twice, once by an expert in lung ultrasound without AI guidance and once by a healthcare professional (registered nurses or medical assistants without formal ultrasound training) who received a short training session with lung guidance AI software. 

In analyzing the results, the researchers found …

  • Nearly all the scans acquired by healthcare professionals with AI assistance were of diagnostic quality. 
  • There was no statistically significant difference in quality between scans acquired by healthcare personnel and those of experts (98% vs. 97%, p=0.31).
  • AI-aided personnel actually performed better than experts in the lung area around the heart (91% vs. 77%), perhaps due to AI guidance. 
  • At 15 minutes, median scan acquisition times were longer than those reported in the literature (six and eight minutes). 

The findings could have major implications around access-to-care issues, with handheld ultrasound scanners distributed to low-resource areas where AI-guided healthcare professionals could perform scans sent to tertiary care centers for interpretation. 

The Takeaway

The new study demonstrates an exciting use case for AI in ultrasound that builds on previous research in echo AI. By giving more healthcare professionals access to the power of ultrasound, it promises to democratize access to care in many resource-challenged areas.  

AI As Malpractice Safety Net

One of the emerging use cases for AI in radiology is as a safety net that could help hospitals avoid malpractice cases by catching errors made by radiologists before they can cause patient harm. The topic was reviewed in a Sunday presentation at RSNA 2024

Clinical AI adoption has been held back by economic factors such as limited reimbursement and the lack of strong return on investment. 

  • Healthcare providers want to know that their AI investments will pay off, either through direct reimbursement from payors or improved operational efficiency.

At the same time, providers face rising malpractice risk, with a number of recent high-profile legal cases.

  • For example, a New York hospital was hit with a $120M verdict after a resident physician working the night shift missed a pulmonary embolism. 

Could AI limit risk by acting as a backstop to radiologists? 

  • At RSNA 2024, Benjamin Strong, MD, chief medical officer at vRad, described how they have deployed AI as a QA safety net. 

vRad mostly develops its own AI algorithms, with the first algorithm deployed in 2015. 

  • vRad is running AI algorithms as a backstop for 13 critical pathologies, from aortic dissection to superior mesenteric artery occlusion.

vRad’s QA workflow begins after the radiologist issues a final report (without using AI), and an algorithm then reviews the report automatically. 

  • If discrepancies are found the report is sent to a second radiologist, who can kick the study back to the original radiologist if they believe an error has occurred. The entire process takes 20 minutes. 

In a review of the program over one year, vRad found …

  • Corrections were made for about 1.5k diagnoses out of 6.7M exams.
  • The top five AI models accounted for over $8M in medical malpractice savings. 
  • Three pathologies – spinal epidural abscess, aortic dissection, and ischemic bowel due to SMA occlusion – would have amounted to $18M in payouts over four years.
  • Adding intracranial hemorrhage and pulmonary embolism creates what Strong called the “Big Five” of pathologies that are either the most frequently missed or the most expensive when missed.

The Takeaway

The findings offer an intriguing new use case for AI adoption. Avoiding just one malpractice verdict or settlement would more than pay for the cost of AI installation, in most cases many times over. How’s that for return on investment?

How Are Doctors Using AI?

How are healthcare providers who have adopted AI really using it? A new Medscape/HIMSS survey found that most providers are using AI for administrative tasks, while medical image analysis is also one of the top AI use cases. 

AI has the potential to revolutionize healthcare, but many industry observers have been frustrated with the slow pace of clinical adoption. 

  • Implementation challenges, regulatory issues, and lack of reimbursement are among the reasons keeping more healthcare providers from embracing the technology.

But the Medscape/HIMSS survey shows some early successes for AI … as well as lingering questions. 

  • Researchers surveyed a total of 846 people in the U.S. who were either executive or clinical leaders, practicing physicians or nurses, or IT professionals, and whose practices were already using AI in some way.

The top four tasks for which AI is being used were administrative rather than clinical, with image analysis occupying the fifth spot … 

  1. Transcribing patient notes (36%). 
  2. Transcribing business meetings (32%).
  3. Creating routine patient communications (29%).
  4. Performing patient record-keeping (27%).
  5. Analyzing medical images (26%).

The survey also analyzed attitudes toward AI, finding …

  • 57% said AI helped them be more efficient and productive.
  • But lower marks were given for reducing staff hours (10%) and lowering costs (31%).
  • AI got the highest marks for helping with transcription of business meetings (77%) and patient notes (73%), reviewing medical literature (72%), and medical image analysis (70%).

The findings track well with developments at last week’s RSNA 2024, where AI algorithms dedicated to non-clinical tasks like radiology report generation, scheduling, and operation analysis showed growing prominence. 

  • Indeed, many AI developers have specifically targeted the non-clinical space, both because commercialization is easier (FDA authorization is not typically needed) and because doctors often say they need more help with administrative rather than clinical tasks.

The Takeaway

While it’s easy to be impatient with AI’s slow uptake, the Medscape/HIMSS survey shows that AI adoption is indeed occurring at medical practices. And while image analysis was radiology’s first AI use case, speeding up workflow and administrative tasks may end up being the technology’s most impactful application.

RSNA Goes All-In on AI

CHICAGO – It’s been AI all the time this week at RSNA 2024. From clinical sessions packed with the latest findings on AI’s utility to technical exhibits crowded with AI vendors, artificial intelligence and its impact on radiology was easily the hottest trend at McCormick Place.

Radiology greeted AI with initial skepticism when the first applications like IBM Watson were introduced at RSNA around a decade ago.

  • But the field’s attitude has been evolving to the point where AI is now being viewed as perhaps the only technology that can save the discipline from the vicious cycle of rising exam volume, falling reimbursement, and pervasive levels of burnout.

RSNA telegraphed the shift last year by announcing that Stanford University’s Curtis Langlotz, MD, PhD, would be RSNA 2024 president. 

  • Langlotz is one of the most respected AI researchers and educators in radiology, and even coined the phrase that while AI would not replace radiologists, radiologists with AI would replace those without it. 

In his president’s address, Langlotz echoed this theme, painting a picture of a future radiology in which humans and machines collaborate to deliver better patient care than either could alone.

  • Langlotz’s talk was followed by a presentation by another prominent AI luminary – Nina Kottler, MD, of Radiology Partners.

Kottler took on the concerns that many in radiology (and in the world at large) have about AI as a disruptive force in a field that cherishes its traditions.

  • She advised radiology to take a leading role in AI adoption, repeating a famous quote that the best way to predict the future is to create it yourself. 

What were the other trends besides AI at RSNA 2024? They included…

  • Photon-counting CT, which is likely to see new market entrants in 2025.
  • Total-body PET, with PET scanners that have extra-long detector arrays.
  • Theranostics, a discipline that integrates diagnosis and therapy and promises to breathe new life into SPECT.
  • CT colonography and CCTA, which will see positive reimbursement changes in 2025.
  • Continued growth of CT lung screening, especially as a tool for opportunistic screening of other conditions.
  • Continued expansion of AI for breast screening.

The Takeaway

The RSNA meeting has been called radiology’s Super Bowl and World Cup all rolled into one, and this year didn’t disappoint. RSNA 2024 showed that radiology is prepared to fully embrace AI – and a future in which humans and machines collaborate to deliver better patient care.

Mammo AI Kicks Off RSNA 2024

Welcome to RSNA 2024! This year’s meeting is starting with a bang, with two important sessions highlighting the key role AI can play in breast screening. 

Sunday’s presentations cap a year that’s seen the publication of several large studies demonstrating that AI can improve breast cancer screening while potentially reducing radiologist workload. 

  • That momentum is continuing at RSNA 2024, with morning and afternoon sessions on Sunday dedicated to mammography AI. 

Some findings from yesterday’s morning session include … 

  • Two AI algorithms were better than one when supporting radiologists in breast screening, with cancer detection ratios relative to historic performance rising from 0.97 to 1.08 with one AI to 1.09 to 1.14 with two algorithms.
  • ScreenPoint Medical’s Transpara algorithm was able to prioritize the worklist for 57% of breast screening exams by assigning risk scores to mammograms, helping reduce report turnaround times. 
  • iCAD’s ProFound AI software helped radiologists detect 7.8% more breast cancers on DBT exams, and cancers were detected at an earlier stage. 
  • Applying AI for breast screening to a racially diverse population yielded evenly distributed performance improvements.

Meanwhile, the Sunday afternoon session also included significant mammography AI presentations, such as …

  • A hybrid screening strategy – with suspicious breast cancer cases only recalled if the AI exhibits high certainty – reduced workload 50%. 
  • Lunit’s Insight DBT AI showed potential to reduce interval cancer rates in DBT screening by identifying 27% of false-negative and 36% of interval cancers.
  • In the ScreenTrustCAD trial in Sweden, using Lunit’s Insight MMG algorithm to replace a double-reading radiologist reduced workload 50% with comparable cancer detection rates.
  • A German screening program found that ScreenPoint Medical’s Transpara AI boosted the cancer detection rate by 8.7% (from 0.68% to 0.74%), with 8.8% of cancers solely detected by AI.
  • Researchers took a look back at abnormality scores from three commercially available AI algorithms after cancer diagnosis, finding evidence that cancers could be detected earlier. 

The Takeaway

Breast screening seems to be the clinical use case where radiologists need the most help, and Sunday’s sessions show the progress AI is making toward achieving that reality. 

Be sure to check back on our X, LinkedIn, and YouTube pages for more coverage of this week’s events in Chicago. And if you see us on the floor of McCormick Place, stop and say hello!

How Should AI Be Monitored?

Once an AI algorithm has been approved and moves into clinical use, how should its performance be monitored? This question was top of mind at last week’s meeting of the FDA’s new Digital Health Advisory Committee.

AI has the potential to radically reshape healthcare and help clinicians manage more patients with fewer staff and other resources. 

  • But AI also represents a regulatory challenge because it’s constantly learning, such that after a few years an AI algorithm might be operating much differently from the version first approved by the FDA – especially with generative AI. 

This conundrum was a point of discussion at last week’s DHAC meeting, which was called specifically to focus on regulation of generative AI, and could result in new rules covering all AI algorithms. (An executive summary that outlines the FDA’s thinking is available for download.)

Radiology was well-represented at DHAC, understandable given it has the lion’s share of authorized algorithms (73% of 950 devices at last count). 

  • A half-dozen radiology AI experts gave presentations over two days, including Parminder Bhatia of GE HealthCare; Nina Kottler, MD, of Radiology Partners; Pranav Rajpurkar, PhD, of Harvard; and Keith Dreyer, DO, PhD, and Bernardo Bizzo, MD, PhD, both of Mass General Brigham and the ACR’s Data Science Institute.  

Dreyer and Bizzo directly addressed the question of post-market AI surveillance, discussing ongoing efforts to track AI performance, including … 

The Takeaway

Last week’s DHAC meeting offers a fascinating glimpse at the issues the FDA is wrestling with as it contemplates stronger regulation of generative AI. Fortunately, radiology has blazed a trail in setting up structures like ARCH-AI and Assess-AI to monitor AI performance, and the FDA is likely to follow the specialty’s lead as it develops a regulatory framework.

Get every issue of The Imaging Wire, delivered right to your inbox.

You might also like..

Select All

You're signed up!

It's great to have you as a reader. Check your inbox for a welcome email.

-- The Imaging Wire team

You're all set!