AI Spots Lung Nodules

A new study in Radiology on an AI algorithm for analyzing lung nodules on CT lung cancer screening exams shows that radiologists may be able to have their cake and eat it too: better identification of malignant nodules with lower false-positive rates. 

The rising utilization of low-dose CT screening is great news for clinicians (and eligible patients), but managing suspicious nodules remains a major challenge, as false-positive findings expose patients to unnecessary biopsies and costs.

  • False-positive rates have come down somewhat from the high rates seen in the big lung cancer screening clinical trials like NLST and NELSON, but there is still room for improvement.

Dutch researchers applied AI to the problem, developing a deep learning algorithm trained on 16.1k NLST nodules that produces a score from 0% to 100% based on a nodule’s likelihood of malignancy. 

  • They then tested the algorithm with baseline screening rounds of 4.1k patients from three datasets drawn from different lung cancer screening trials: NELSON, DLSCT in Denmark, and MILD in Italy.

The algorithm’s performance was compared to the Pan-Canadian Early Detection of Lung Cancer model, a widely used clinical guideline that uses patient characteristics like age and family history and nodule characteristics size and location to estimate risk.

Compared to PanCan, the deep learning algorithm…

  • Reduced false-positive findings sharply by classifying more benign cases as low risk (68% vs. 47%) when set at 100% sensitivity for cancers diagnosed within one year.
  • For all nodules, achieved comparable AUCs at one year (0.98 vs. 0.98), two years (0.96 vs. 0.94), and throughout screening (0.94 vs. 0.93).
  • For indeterminate nodules 5-15 mm, significantly outperformed PanCan at one year (0.95 vs. 0.91), two years (0.94 vs. 0.88), and throughout screening (0.91 vs. 0.86).

The model’s performance for indeterminate nodules is particularly intriguing, as these are challenging to manage due to their small size and can lead to unnecessary follow-up procedures.

The Takeaway

Using AI to differentiate malignant from benign nodules promises to make CT lung cancer screening more accurate and easier to perform than manual nodule classification methods – and should add to the exam’s growing momentum.

Bayer Steps Back from Blackford

Pharmaceutical giant Bayer said it plans to deprioritize its investment in AI platform company Blackford Analysis as part of a general move away from the platform business. Bayer is also winding down its investment in Calantic Digital Solutions, the digital platform company it formed in 2022. 

The move is a stunning turnaround for Blackford, which was founded in 2010 and was the first and perhaps most prominent of the digital AI platform companies. 

  • Bayer acquired Blackford in 2023, and operated it in parallel with Calantic, which also offered AI solutions in the platform format. 

Platform AI companies have a simple value proposition: rather than buy AI algorithms from multiple individual developers, hospitals and imaging facilities contract with a single platform company and pick and choose the solutions they need.

  • It’s a great idea, but platform providers face the same challenges as algorithm developers due to slower-than-expected AI clinical adoption. 

Bayer’s move was confirmed by company representatives, who noted that personnel will be maintained to support the Blackford AI platform and fulfill existing contractual commitments. 

  • “Bayer has made the decision to deprioritize its digital platform business, which includes Blackford, and will discontinue offerings and services. Resources will be reinvested into growth areas that support healthcare institutions around the world, in alignment with customer needs,” the representative said. 

And in a letter to customers obtained by The Imaging Wire, Blackford confirmed Bayer’s decision, stating that Blackford’s core team will remain in place led by COO James Holroyd during the transition. 

  • The company also said it would “discuss and facilitate opportunities to move existing Blackford contracts into direct deals with AI vendors, or alternate platform providers.”

Bayer’s withdrawal from the digital platform space includes the Calantic business, which Bayer formed three years ago to offer internally developed AI tools.

  • At the time, industry experts postulated that contrast agent companies had an inside track for radiology AI thanks to their contracts to supply consumables to customers – a theory that in retrospect hasn’t borne fruit.

Speculation about Blackford’s fate burst into the public eye late last week with a detailed LinkedIn post by healthcare recruiter Jay Gurney, who explained that while Blackford has been successful – and is sitting on a “monster pipeline” of hospital deals – it’s simply not a great fit for a pharmaceutical company. 

  • Despite Bayer’s withdrawal, Blackford could make a good acquisition candidate for a company without a strong AI portfolio that wants to quickly boost its position. 

The Takeaway

Bayer’s announcement that it’s winding down its Blackford and Calantic investments is sure to send shockwaves through the radiology AI industry, which is already struggling with slow clinical adoption and declining venture capital investment. The question is whether a white knight will ride to Blackford’s rescue.

Why Radiology Leaders Are Turning to AI – And Why They’re Not Looking Back

From single-scanner clinics to university hospitals, radiology leaders around the globe face the same challenge: keeping up with rising patient demand while managing costs.

MRI volumes are climbing. Scanner hours and budgets? Not so much.

  • Under pressure to do more with less, decision-makers are reaching a conclusion that was unthinkable just a few years ago: AI-powered MRI is no longer a novelty – it’s a necessity.

No matter the size or scale of the operation, diagnostic imaging providers face a familiar set of challenges:

  • High capital costs – New scanners cost seven figures, and upgrades run hundreds of thousands.
  • Limited capacity – Most sites can’t easily add scanners, staff, or hours to meet demand.
  • Rising demand – MRI volume continues to grow as chronic conditions rise and preventive care gains traction.
  • Patient expectations – Long, uncomfortable exams frustrate patients who may look elsewhere.

AI offers a path forward, helping imaging teams handle more studies without compromising diagnostic standards.

AIRS Medical built SwiftMR, AI-powered MRI reconstruction software, to meet today’s imaging challenges. Hospitals and clinics in over 35 countries use SwiftMR to:

  • Reduce scan times by up to 50% compared to standard protocols.
  • Deliver sharper images radiologists can trust.
  • Enhance the patient experience with shorter exams and fewer motion-related rescans.

SwiftMR is vendor-neutral, compatible with all MRI makes, models, and field strengths.

FDA-cleared, MDR-certified, and clinically validated, SwiftMR is trusted by over 300 imaging providers in the U.S. and over 1,000 globally, including:

These outcomes show that AI-powered MRI delivers tangible operational, clinical, and financial benefits across site types and geographies. 

Watch this video to learn more about SwiftMR.

The Takeaway

Radiology leaders are relying on SwiftMR to transform how they deliver care. From enterprise networks to single-scanner clinics, imaging teams are unlocking new levels of efficiency and patient care.

Lunit Acquires Prognosia Breast Cancer Risk AI

AI developer Lunit is ramping up its position in breast cancer risk prediction by acquiring Prognosia, the developer of a risk prediction algorithm spun out from Washington University School of Medicine in St. Louis. The move will complement Lunit and Volpara’s existing AI models for 2D and 3D mammography analysis. 

Risk prediction has been touted as a better way to determine which women will develop breast cancer in coming years, and high-risk women can be managed more aggressively with more frequent screening intervals or the use of additional imaging modalities.

  • Risk prediction traditionally has relied on models like Tyrer-Cuzick, which is based on clinical factors like patient age, weight, breast density, and family history.

But AI advancements have been leveraged in recent years to develop algorithms that could be more accurate than traditional models.

  • One of these is Prognosia, founded in 2024 based on work conducted by Graham Colditz, MD, DrPH, and Shu (Joy) Jiang, PhD, at Washington University.

Their Prognosia Breast algorithm analyzes subtle differences and changes in 2D and 3D mammograms over time, such as texture, calcification, and breast asymmetry, to generate a score that predicts the risk of developing a new tumor.

Prognosia built on that momentum by submitting a regulatory submission to the FDA, and the application received Breakthrough Device Designation.

  • In conversations with The Imaging Wire, Colditz and Jiang believe AI-based estimates like those of Prognosia Breast will eventually replace the one-size-fits-all model of breast screening, with low-risk women screened less often and high-risk women getting more attention.

Colditz and Jiang are working with the FDA on marketing authorization, and once authorized Prognosia’s algorithm will enter a segment that’s drawing increased attention from AI developers.

  • The two will continue to work with Lunit as it moves Prognosia Breast into the commercialization phase and integrates the product with Lunit’s own offerings like the RiskPathways application in its Lunit Breast Suite and technologies it accessed through its acquisition of Volpara in 2024

The Takeaway

Lunit’s acquisition of Prognosia portends exciting times ahead for breast cancer risk prediction. Armed with tools like Prognosia Breast, clinicians will soon be able to offer mammography screening protocols that are far more tailored to women’s risk profiles than what’s been available in the past. 

Ensemble Mammo AI Combines Competing Algorithms

If one AI algorithm works great for breast cancer screening, would two be even better? That’s the question addressed by a new study that combined two commercially available AI algorithms and applied them in different configurations to help radiologists interpret mammograms.

Mammography AI is emerging as one of the primary use cases for medical AI, understandable given that breast imaging specialists have to sort through thousands of normal cases to find one cancer. 

Most of these studies applied a single AI algorithm to mammograms, but multiple algorithms are available, so why not see how they work together? 

  • This kind of ensemble approach has already been tried with AI for prostate MRI scans – for example in the PI-CAI challenge – but South Korean researchers writing in European Radiology believed it would be a novel approach for mammography.

So they combined two commercially available algorithms – Lunit’s Insight MMG and ScreenPoint Medical’s Transpara – and used them to analyze 3k screening and diagnostic mammograms.

  • Not only did the authors combine competing algorithms, but they adjusted the ensemble’s output to emphasize five different screening parameters, such as sensitivity and specificity, or by having the algorithms assess cases in different sequences.

The authors assessed ensemble AI’s accuracy and ability to reduce workload by triaging cases that didn’t need radiologist review, finding…

  • Outperformed single-algorithm AI’s sensitivity in Sensitive Mode (84% vs. 81%-82%) with an 18% radiologist workload reduction.
  • Outperformed single-algorithm AI’s specificity in Specific Mode (88% vs. 84%-85%) with a 42% workload reduction.
  • Had 82% sensitivity in Conservative Mode but only reduced workload by 9.8%.
  • Saw little difference in sensitivity based on which algorithm read mammograms first (80.3% and 80.8%), but both approaches reduced workload 50%.

The authors suggested that if applied in routine clinical use, ensemble AI could be tailored based on each breast imaging practice’s preferences and where they felt they needed the most help.

The Takeaway

The new results offer an intriguing application of the ensemble AI strategy to mammography screening. Given the plethora of breast AI algorithms available and the rise of platform AI companies that put dozens of solutions at clinicians’ fingertips, it’s not hard to see this approach being put into clinical practice soon.

Unpacking Heartflow IPO’s Lessons for AI Firms

Cardiac AI specialist Heartflow went public last week, and the IPO was a watershed moment for the imaging AI segment. The question is whether Heartflow is blazing a path to be followed by other AI developers or if the company is a shooting star that’s more likely to be admired from afar than emulated.

First the details: Heartflow went public August 8, raising $317M by issuing 16.7M shares at $19 each – and finishing up 50% for the day. 

  • The IPO beat analyst expectations, which originally estimated gross proceeds of $215M, and put the company’s market capitalization at $2.5B – well within the mid-cap stock category. 

So what’s so special about this IPO? Heartflow’s flagship product is FFRCT Analysis, which uses AI-based software to calculate fractional flow reserve – a measure of heart health – from coronary CT angiography scans. 

  • This eliminates the need for an invasive pressure-wire catheter to be threaded into the heart.

Heartflow got an early start in the FFR-CT segment by nabbing FDA clearance for Heartflow FFRCT Analysis in 2014, and since then has been the single most successful AI company in winning reimbursement from both CMS and private payors.

  • In fact, a 2023 analysis of AI reimbursement found that FFRCT Analysis was the top AI product by number of submitted CPT claims, at 67.3k claims – over 4X more than the next product on the list.

That’s created a revenue stream for Heartflow that clearly bucks the myth that clinicians aren’t getting paid for AI.

  • And in an IPO filing with the SEC, Heartflow revealed how reimbursement is driving revenue growth, which was up 44% in 2024 over 2023 ($125.8M vs. $87.2M, respectively). 

But it’s not all sunshine and rainbows at the Mountain View, California company, which posted significant net losses for both 2024 and 2023 ($96.4M and $95.7M).

  • As a public company, Heartflow may have a shorter leash in getting to profitability had it remained privately held.

But the bigger picture is what Heartflow’s IPO means for the imaging AI segment as a whole. 

  • It’s easily the biggest IPO by a pure-play imaging IT vendor in years, and dispels the conventional wisdom that investors are shying away from the sector.

The Takeaway

Heartflow’s IPO shows that in spite of clinical AI’s shortcomings (slow adoption, sluggish reimbursement, etc.), it’s still generating significant investor interest. The company’s focus on achieving both clinical and financial milestones (i.e. reimbursement) should be an example for other AI developers.

AI Predicts Radiology Workload

AI is touted as a tool that can help radiologists lighten their workload. But what if you could use AI to predict when you’ll need help the most? Researchers in Academic Radiology tried that with an AI algorithm that predicted radiology workload based on three key factors. 

Imaging practices are facing pressure from a variety of forces that include rising imaging volume and workforce shortages, with one recent study documenting a sharp workload increase over the past 10 years.

  • Many industry observers believe AI can assist radiologists in reaching faster diagnoses, or by removing studies most likely to be normal from the worklist based on AI analysis. 

But researchers and vendors are also developing AI algorithms for operational use – arguably where radiology practices need the most help.

  • AI can predict equipment utilization, or even create a virtual twin of a radiology facility where administrators can adjust various factors like staffing to visualize their impact on operations.

In the new study, researchers from Mass General Brigham Hospital developed six machine learning algorithms based on a year of imaging exam volumes from two academic medical centers.

The group entered 707 features into the models, but ultimately settled on three main operational factors that best predicted the next weekday’s imaging workload, in particular for outpatient exams…

  • The current number of unread exams.
  • The number of exams scheduled to be performed after 5 p.m.
  • The number of exams scheduled to be performed the next day.

The algorithm’s predictions were put into clinical use with a Tableau dashboard that pulled data from 5 p.m. to 7 a.m. the following day, computed workload predictions, and output its forecast in an online interface they called “BusyBot.”

  • But if you’re only analyzing three factors, do you really need AI to predict the next day’s workload? 

The authors answered this question by comparing the best-performing AI model to estimates made by radiologists from just looking at EHR data. 

  • Humans either underestimated or overestimated the next day’s volume compared to actual numbers, leading the authors to conclude that AI did a better job of calculating dynamics and weighting variables to produce accurate estimates.

The Takeaway

Using AI to predict the next day’s radiology workload is an intriguing twist on the argument that AI can help make radiologists more efficient. Better yet, this use case helps imagers without requiring them to change the way they work. What’s not to like?

AI for Bone Density Screening with X-Ray

Screening women for osteoporosis using AI analysis of chest X-rays acquired for other clinical indications meets U.S. thresholds for cost-effectiveness. That’s according to a new study in JACR that highlights the potential of radiography AI for opportunistic screening.

Osteoporosis screening is already performed using DEXA scanners that detect bone density loss in women.

  • But DEXA scanners aren’t always available, and dedicated screening for just one condition can be expensive. 

Using AI to analyze chest X-rays that women might be getting for other conditions could expand the pool of women being screened for osteoporosis without incurring significant additional costs.

  • Indeed, Japanese researchers recently published a study honing in on the best techniques for AI-enhanced osteoporosis screening with radiography.

In the new study, researchers performed a modeling analysis that simulated the cost-effectiveness of an osteoporosis screening program based on AI-enhanced chest radiographs for U.S. women aged 50 and up. 

  • The cost analysis compared osteoporosis screening plus treatment versus treatment alone, incorporating standard fracture treatment and imaging costs ($66 for DEXA scans, $20 for chest X-rays).

In a sample of 1k women, AI-enhanced X-ray osteoporosis screening…

  • Had an ICER of $72.1k per QALY, below the U.S. cost-effectiveness thresholds of $100k to $150k per QALY.
  • Would produce healthcare savings of $99k, offset by treatment costs of $208k.
  • Would prevent 2.8 fractures and increase QALYs by 1.5.
  • Would remain cost-effective as long as AI’s cost did not exceed $62 per patient.

Adjusting the model’s parameters produced even better performance for AI-based screening. 

  • If medication adherence improved by 50%, the ICER was reduced to $28.6k.

The Takeaway

The new research offers more support for opportunistic osteoporosis screening, this time perhaps from the most important angle of all: cost-effectiveness. If confirmed with other studies, AI-based bone density analysis could make routine chest X-rays even more valuable.

RP Builds AI Mosaic as Company’s IT Foundation

Radiology Partners announced a new initiative to guide the rollout of AI across its nationwide network of radiology practices. The company’s new MosaicOS will be the IT foundation that connects RP practices and supports clinical uses from AI-assisted reporting to report generation and even image management.

Radiology Partners has grown since its founding in 2012 to become the largest privately held provider of imaging services in the U.S. and a major force behind the consolidation of private-practice radiology groups.

  • RP has always maintained a heavy technology investment, and has been looking closely at the rise of AI in radiology.

That’s because the growth in imaging volume is so massive that clinicians will no longer be able to care for patients adequately without AI’s assistance, at least according to RP’s Associate Chief Medical Officer for Clinical AI Nina Kottler, MD.

RP laid the groundwork for MosaicOS in 2020 by first migrating its technology stack to a cloud-native infrastructure. 

  • This frees RP from reliance on on-premises legacy software and enables the company to push out updates that can be adopted quickly across its network.

RP’s Mosaic rollout includes the following components as the company…

  • Forms a new division, Mosaic Clinical Technologies, to oversee its AI activities.
  • Debuts MosaicOS, a cloud-native operating system that combines AI support with workflow and other IT tools.
  • Launches Mosaic Reporting, an automated structured reporting solution that combines ambient voice AI with large language model technology.
  • Develops Mosaic Drafting, a multimodal AI foundation model that pre-drafts X-ray reports that radiologists can review, edit, and sign. 

Mosaic Reporting is already in use at some RP sites, and the company is pursuing FDA clearance for broader use of Mosaic Drafting. More Mosaic applications are on the way.

  • Mosaic tools will be disseminated to RP centers using the cloud-native infrastructure, and MosaicOS will include image management functions that providers can choose to use in place of or alongside existing tools like viewers and archives. 

Kottler told The Imaging Wire that RP has de-emphasized individual pixel-based AI models in favor of foundation models that have broader application.

  • What’s more, RP CEO Rich Whitney said the company has chosen to develop AI technology internally rather than rely on outside vendors, as this gives it greater control over its own AI adoption.

The Takeaway

The launch of MosaicOS marks an exciting milestone not only for Radiology Partners but also for radiology in general that could address nagging concerns about clinical AI adoption on a broad scale. RP has not only the network but also the technology resources to make the rollout a success – the question is whether outside AI developers will share in the rewards.

AI-Driven Lung Cancer Screening and Improving Patient Outcomes

AI is reshaping clinical decision-making, optimizing resource allocation, and enhancing both patient outcomes and experience in CT lung cancer screening. Radiology providers are successfully integrating new AI software tools into hospital operations – supporting diagnostic accuracy and improving patient outcomes.

At the center of this trend is Coreline Soft’s FDA-cleared AVIEW LCS Plus, a 3-in-1 solution capable of detecting lung nodules, quantifying emphysema, and analyzing coronary artery calcification – all from a single low-dose CT scan. 

  • AVIEW LCS Plus is in use at Temple Health, a nationally recognized institution in the U.S. Northeast, where it has allowed providers to streamline clinical workflows from detection to follow-up, delivering measurable improvements in care and ROI.

Coreline Soft will co-host a strategic webinar with the Temple Lung Center on August 1 at 1:30 PM ET, focused on AI-powered lung cancer screening and the evolving paradigm of early detection for chest diseases.

The webinar will offer firsthand insight into how Temple Health is drawing attention as a model for integrating AI beyond diagnosis – transforming it into a scalable, patient-centered care strategy.

The discussion will focus on two main areas…

  • Real-world outcomes: How AI improved diagnostic efficiency, early detection, and comorbidity detection.
  • A deep dive into the precision technology of the AVIEW LCS Plus platform.

AI like Coreline’s is not replacing clinical judgment, but reinforcing it, enhancing radiologists’ ability to detect, triage, and treat lung disease earlier and more efficiently, Criner believes. 

  • The webinar is open to pulmonologists, radiologists, cardiologists, respiratory-adjacent professionals, hospital stakeholders and administrators, and primary care providers across the U.S. and Canada. Interested participants can register for free in advance via the official registration link. 

The Takeaway

AI solutions like Coreline Soft’s AVIEW LCS Plus platform are having a real-world impact on healthcare providers as they roll out CT lung cancer screening programs. Sign up to learn more on August 1.

Get every issue of The Imaging Wire, delivered right to your inbox.

This content is exclusive to subscribers

Log in or join by entering your email below.

Completely free. Every Monday and Thursday