Imaging and COVID Vaccine Effectiveness

In the debate over how long the protection from COVID-19 vaccines last, radiology has now entered the chat. A new study in Radiology shows that people with COVID who got vaccinated more than eight months before COVID diagnosis had more severe clinical findings on imaging exams. 

The rapid development of COVID vaccines and their rollout worldwide has been one of the biggest public health success stories of the last 100 years. 

  • Still, even the most effective vaccines lose their potency over time, and COVID vaccines are no different. 

The question is, how long does the COVID vaccine’s protection last? 

  • Previous research documented a decline during the Delta and Omicron waves in vaccine effectiveness against hospitalization, from 92% to 79% after 224-251 days, and a drop in efficacy against death from 91% to 86% after 168-195 days in those with severe COVID.

To shed more light on the issue, researchers in South Korea performed imaging exams on 4.2k patients with COVID from June 2021 to December 2022. 

  • They correlated the severity of clinical outcomes like pneumonia visible on imaging exams to the length of time between patient diagnosis and when they had been vaccinated. 

Compared to those vaccinated in the last 90 days before COVID diagnosis, people vaccinated more than 240 days …

  • Had almost twice odds of severe outcomes (OR = 1.94)
  • Had higher odds of severe pneumonia on chest radiographs (OR = 1.65)
  • But there was no difference in the odds of severe outcome between those vaccinated in the last 90 days and those vaccinated 91-240 days before diagnosis

In an interesting wrinkle to the study, the researchers found no statistically significant difference in odds of severe pneumonia visible on chest CT scans between those vaccinated more than 90 days before diagnosis and those vaccinated within 90 days.

  • The authors proposed that the low use of CT for pneumonia assessment in their study population (20%) and its use primarily for critically ill patients could have introduced bias into the results. 

The Takeaway

The new findings shed light on the declining potency of COVID vaccines over time and could inform public debate over the length of time between boosters. The research also dovetails with other studies showing that the vaccine’s effectiveness does indeed begin to wane at six months.

Out-of-Network Radiology Claims Fall

Is out-of-network billing – when a patient receives care outside their insurance network – still a problem in radiology? A new study in JACR shows that out-of-network commercial claims have dropped dramatically since 2007.

Out-of-network healthcare has been the focus of a number of legislative efforts in recent years as lawmakers try to protect patients from the financial sting of getting a big bill for services rendered outside their provider’s network.

  • Probably the centerpiece of this effort is the federal No Surprises Act, which went into effect in January 2022; not only did it cap the amount that patients can be billed for out-of-network services, but it created an independent dispute resolution mechanism for adjudicating disagreement between providers and payors over how much they should be paid.

The IDR mechanism has been the focus of legal wrangling in recent months, but the new study in JACR indicates that it might not be getting much use after all, at least in radiology.

Researchers from the ACR’s Harvey L. Neiman Health Policy Institute analyzed 80M commercial claims for radiology services from 2007 to 2021, finding…

  • Out-of-network radiology claims fell dramatically (to 1.1% vs. 13%)
  • Out-of-network claims fell for inpatient stays (to 1.4% vs. 10%)
  • Claims also fell for emergency visits (to 0.4% vs. 3.9%)
  • By modality, most claims were for X-ray (57%), followed by ultrasound and CT (15% each) 
  • By 2021, radiologists practiced almost exclusively in-network

What’s the reason for the dramatic decline? The study authors credit good-faith negotiations between radiology practices and commercial payors, as well as the impact of state surprise billing laws (the study period occurred before the federal No Surprises Act went into effect).

  • Other possible factors include consolidation among practices, hospitals, and payors; expansion of academic centers into communities; and the COVID-19 pandemic.   

The Takeaway

The JACR study is welcome news for both patients and radiology practices. Patients are less likely to be hit with surprise medical charges, while practices are less likely to have to fight through the IDR process to resolve claims. In the end, everybody wins – even insurance companies.

Why Has Breast Cancer Mortality Fallen?

There’s no question that breast cancer mortality has fallen dramatically over the last several decades. The question is why. 

Proponents of cancer screening believe that early detection has played a major role by finding cancer and enabling treatment to start before it spreads. 

  • But that position is disputed by a vocal minority of skeptics who believe that better cancer treatments deserve most of the credit. 

A case in point was the Bretthauer et al study published in 2023, which claimed that there was no evidence to support screening’s beneficial impact on all-cause mortality. 

  • This despite a demonstrated long-term decline in mortality for the cancers targeted by the four major population-based screening programs: breast, cervical, prostate, and lung. 

A new study in JAMA offers clarity in the debate by placing a numeric value on the tools that have contributed to lower breast cancer mortality. Researchers led by Jennifer Caswell-Jin, MD, of Stanford University used simulation models based on CISNET data to analyze breast cancer mortality from 1975 to 2019, drawing the following conclusions:

  • Screening and treatment together produced a 58% decline in breast cancer mortality, from a death rate of 48/100,000 women to 27/100,000
  • 47% of the reduction was due to treatment of stage I to III cancer 
  • 29% was due to treatment for metastatic breast cancer 
  • 25% was associated with mammography screening 

The authors also discovered that the biggest improvement in breast cancer survival after metastatic recurrence (3.2 vs. 1.9 years) happened between 2000-2019. 

The Takeaway

The new results in Caswell-Jin et al should be seen as another victory for the screening community. In addition to setting a numeric figure for screening’s value, they also demonstrate the synergistic effect when screening and treatment work together to target breast cancer before it has a chance to spread. Efforts to separate the two are quixotic at best and dangerous to women at worst. 

AI Models Go Head-to-Head in Project AIR Study

One of the biggest challenges in assessing the performance of different AI algorithms is the varying conditions under which AI research studies are conducted. A new study from the Netherlands published this week in Radiology aims to correct that by testing a variety of AI algorithms head-to-head under similar conditions. 

There are over 200 AI algorithms on the European market (and even more in the US), many of which address the same clinical condition. 

  • Therefore, hospitals looking to acquire AI can find it difficult to assess the diagnostic performance of different models. 

The Project AIR initiative was launched to fill the gap in accurate assessment of AI algorithms by creating a Consumer Reports-style testing environment that’s consistent and transparent.

  • Project AIR researchers have assembled a validated database of medical images for different clinical applications, against which multiple AI algorithms can be tested; to ensure generalizability, images have come from different institutions and were acquired on equipment from different vendors. 

In the first test of the Project AIR concept, a team led by Kicky van Leeuwen of Radboud University Medical Centre in the Netherlands invited AI developers to participate, with nine products from eight vendors validated from June 2022 to January 2023: two models for bone age prediction and seven algorithms for lung nodule assessment (one vendor participated in both tests). Results included:

  • For bone age analysis, both of the tested algorithms (Visiana and Vuno) showed “excellent correlation” with the reference standard, with an r correlation coefficient of 0.987-0.989 (1 = perfect agreement)
  • For lung nodule analysis, there was a wider spread in AUC between the algorithms and human readers, with humans posting a mean AUC of 0.81
  • Researchers found superior performance for Annalise.ai (0.90), Lunit (0.93), Milvue (0.86), and Oxipit (0.88)

What’s next on Project AIR’s testing agenda? Van Leeuwen told The Imaging Wire that the next study will involve fracture detection. Meanwhile, interested parties can follow along on leaderboards for both bone age and lung nodule use cases. 

The Takeaway

Head-to-head studies like the one conducted by Project AIR may make many AI developers squirm (several that were invited declined to participate), but they are a necessary step toward building clinician confidence in the performance of AI algorithms that needs to take place to support the widespread adoption of AI. 

Top 12 Radiology Trends for 2024

What will be the top radiology trends for 2024? We talked to key opinion leaders across the medical imaging spectrum to get their opinions on the technologies, clinical applications, and regulatory developments that will shape the specialty for the next 12 months.

AI – Generative AI to Reduce Radiology’s Workload: “New generative AI methods will summarize complex medical records, draft radiology reports from images, and explain radiology reports to patients using language they understand. These innovative systems will reduce our workload and will provide more time for us to connect with our colleagues and our patients.” — Curtis Langlotz, MD, PhD, Stanford University and president, RSNA 2024

AI – Generative AI Will Get Multimodal: “In 2024, we can expect continued innovations in generative AI with a greater emphasis on integrating GenAI into existing and new radiology and patient-facing applications with growing interests in retrieval-augmented generation, fine-tuning, smaller models, multi-model routing, and AI assistants. Medicine being multimodal, the term ‘multimodal’ will become more ubiquitous.” — Woojin Kim, MD, CMIO at Rad AI

AI – Will AI Really Reduce Radiology Burnout? “Burnout will continue to be a huge issue in radiology with no solution in sight. AI vendors will offer algorithms as solutions to burnout with catchy slogans such as ‘buy our lung nodule detector and become the radiologist your parents wanted you to be.’ Their enthusiasm will cause even more burnout.” — Saurabh Jha, MBBS, AKA RogueRad, Hospital of the University of Pennsylvania

Breast Imaging – Prepare Now for Density Reporting: “The FDA ‘dense breast’ reporting standard to patients becomes effective on September 10, 2024, and breast imaging centers should be prepared for new patient questions and conversations. A plan for a consistent approach to recommending supplemental screening and facilitating ordering of additional imaging from referring providers should be put into action.” — JoAnn Pushkin, executive director, DenseBreast-info.org

Breast Imaging – Density Reporting to Spur Earlier Detection: “In March 2023, FDA issued a national requirement for reporting breast density to patients and referring providers after mammography. Facilities performing mammograms must meet the September 2024 deadline incorporating breast density type and associated breast cancer risk in their reporting. This change can lead to earlier breast cancer detection as these patients will be informed of supplemental screening as it relates to their breast density and [will] choose to pursue it.” — Stamatia Destounis, MD, Elizabeth Wende Breast Care and chair, ACR Breast Imaging Commission

CT – Lung Cancer Screening to Build Momentum: “Uptake of LDCT screening for lung cancer will increase in the US and worldwide. AI-enabled cardiac evaluation, even on non-gated scans, will allow for prediction of illnesses such as AFib and heart failure.  Quantifying measurement error across platforms will become an important aspect of nodule management.” — David Yankelevitz, MD, Icahn School of Medicine at Mount Sinai Health System

CT – Photon-Counting CT to Expand: “In 2024, we will continue to see many papers published on photon-counting CT, strengthening the body of scientific evidence as to its many strengths. Results from clinical trials involving multiple manufacturers’ systems will also increase in number, perhaps leading to more commercial systems entering the market.” — Cynthia McCollough, PhD, director, CT Clinical Innovation Center, Mayo Clinic

Enterprise Imaging – Time is Ripe for Cloud and AI: “Healthcare has an opportunity for change in 2024, and imaging is ripe for disruption, with burnout, staffing challenges, and new technology needs. Many organizations are expanding their enterprise imaging strategy and are asking how and where they can take the plunge into cloud and AI. Vendors have got the message; now it’s time to push the gas and deliver.” — Monique Rasband, VP of strategy & research, imaging/oncology at KLAS

Imaging IT – Data Brokerage to Go Mainstream: “A new market will hit the mainstream in 2024 – radiology data brokerage. As data-hungry LLMs scale up and the use of companion diagnostics in lifesciences proliferates, health systems will look to cash in on curated radiology data. This will also be an even bigger driver for migration to cloud-based imaging IT.” — Steve Holloway, managing director, Signify Research     

MRI – Prostate MRI to Reduce Biopsies: “Prostate MRI in conjunction with PSMA PET will explode in 2024 and reduce the number of unnecessary biopsies for patients.” — Stephen Pomeranz, MD, CEO of ProScan Imaging and chair, Naples Florida Community Hospital Network 

Theranostics – New Radiotracers to Drive Diagnosis & Treatment: “Through 2024, nuclear medicine theranostics will increasingly be integrated into standard global practice. With many new radiopharmaceuticals in development, theranostics promise early diagnosis and precision treatment for a broadening range of cancers, expanding options for patients resistant to traditional therapies. Treatments will be enhanced by personalized dosimetry, artificial intelligence, and combination therapies.” — Helen Nadel, MD, Stanford University and president, SNMMI 2023-2024

Radiology Operations – Reimbursement Challenges Continue: “In 2024, we will continue to experience recruitment challenges coupled with decreases in reimbursement. Now, more than ever, every radiologist needs to be diligent in advocating for the specialty, focus on business plan diversification, and ensure all services rendered are optimally documented and billed.” — Rebecca Farrington, chief revenue officer, Healthcare Administrative Partners 

The Takeaway
To paraphrase Robert F. Kennedy, radiology is indeed living in interesting times – times of “danger and uncertainty,” but also times of unprecedented creativity and innovation. In 2024, radiology will get a much better glimpse of where these trends are taking us.

Top 10 Radiology Stories of 2023

What were the top 10 radiology stories of 2023 in The Imaging Wire? From worklist cherry-picking to a wearable breast ultrasound scanner – and with lots of AI in between – this year’s top 10 list demonstrates the fascinating new developments going on every day in medical imaging.

1. The Perils of Worklist Cherry-Picking

If you’re a radiologist, chances are at some point in your career you’ve cherry-picked the worklist. But picking easy, high-RVU imaging studies to read before your colleagues isn’t just rude – it’s bad for patients and bad for healthcare. That’s according to a study in Journal of Operations Management that analyzed radiology cherry-picking in the context of operational workflow and efficiency. 

2. Tipping Point for Breast AI? 

Have we reached a tipping point when it comes to AI for breast screening? A study in Radiology demonstrated the value of AI for interpreting screening mammograms. 

3. Autonomous AI for Medical Imaging is Here. Should We Embrace It? 

What is autonomous artificial intelligence, and is radiology ready for this new technology? In this paper, we explored one of the most exciting autonomous AI applications, ChestLink from Oxipit. 

4. Undermining the Argument for NPPs

If you think you’ve been seeing more non-physician practitioners (NPPs) reading medical imaging exams, you’re not alone. A study in Current Problems in Diagnostic Radiology found that the rate of NPP interpretations went up almost 27% over four years. 

5. Reimbursement Drives AI Adoption

It’s no secret that insurance reimbursement drives adoption of new medical technology. But an analysis in NEJM AI showed exactly how reimbursement is affecting the diffusion into clinical practice of perhaps the newest medical technology – artificial intelligence. 

6. Radiation and Cancer Risk

New research on the cancer risk of low-dose ionizing radiation could have disturbing implications for those who are exposed to radiation on the job – including medical professionals. In a study in BMJ, researchers found that nuclear workers exposed to occupational levels of radiation had a cancer mortality risk that was higher than previously estimated.

7. Cardiac Imaging in 2040

What will cardiac imaging look like in 2040? It will be more automated and preventive, and CT will continue to play a major – and growing – role. That’s according to an April 11 article in Radiology in which Dr. David Bluemke and Dr. João Lima looked into the future and offered a top 10 list of major developments in cardiovascular imaging in 2040.

8. When AI Goes Wrong

What impact do incorrect AI results have on radiologist performance? That question was the focus of a study in European Radiology in which radiologists who received incorrect AI results were more likely to make wrong decisions on patient follow-up – even though they would have been correct without AI’s help.

9. The 35 Best Radiology Newsletters, Blogs, and Websites to Follow

We dedicated March 6th’s top story to the people and publications that we rely on to find the most interesting medical imaging stories. Assuming that you already subscribe to The Imaging Wire, these are the 35 other newsletters, websites, blogs, and accounts to follow if you want to know what’s happening in radiology.

10. Breast Ultrasound Gets Wearable

Wearable devices are all the rage in personal fitness – could wearable breast ultrasound be next? MIT researchers have developed a patch-sized wearable breast ultrasound device that’s small enough to be incorporated into a bra for early cancer detection. They described their work in a paper in Science Advances.

The Takeaway

The Imaging Wire’s list of top 10 articles for 2023 shows that, while artificial intelligence featured prominently during the year, there was much more to radiology than just AI. We hope you enjoyed reading our content this year as much as we enjoyed bringing it to you.

Lunit’s Deal for Volpara and AI Consolidation

Is the long-awaited consolidation of the healthcare AI sector gaining steam? In a deal valued at close to $200M, South Korean AI developer Lunit announced a bid to acquire Volpara Health, a developer of software for calculating breast density and cancer risk. 

At first glance, the alliance seems to be a match made in heaven. Lunit is a well-regarded AI developer that has seen impressive results in clinical trials of its Insight family of algorithms for indications ranging from mammography to chest imaging. 

  • Most recently, Lunit received FDA clearance for its Insight DBT software, marking its entry into the US breast screening market, and it also raised $150M in a public stock offering. 

Volpara has a long pedigree as a developer of breast imaging software, although it has shied away from image analysis applications to instead focus on breast center operations and risk assessment, in particular by calculating breast density. 

  • Thus, combining Lunit’s concentration in image analysis with Volpara’s focus on operations and risk assessment enables the combined company to offer a wider breadth of products to breast centers.

Lunit will also be able to take advantage of the marketing and sales structure that Volpara has built in the US mammography sector (97% of Volpara’s sales come from the US, where it has an installed base of 2k sites). Volpara expects 2024 sales of $30M and is cash-flow positive.

The question is whether the acquisition is a sign of things to come in the AI market. 

  • As commercial AI sales have been slow to develop, AI firms have largely funded their operations through venture capital firms – which are notoriously impatient in their quest for returns.

In fact, observers at the recent RSNA 2023 meeting noted that there were very few new start-up entrants into the AI space, and many AI vendors had smaller booths. 

  • And previous research has documented a slowdown in VC funding for AI developers that is prompting start-up firms to seek partners to provide more comprehensive offerings while also focusing on developing a road to profitability. 

The Takeaway

It’s not clear yet whether the Lunit/Volpara deal is a one-off combination or the start of a renewed consolidation trend in healthcare AI. Regardless of what happens, this alliance unites two of the stronger players in the field and has exciting potential for the years to come. 

How to Improve CT Lung Cancer Screening

As the US grapples with low CT lung cancer screening rates, researchers and clinicians around the world are pressing ahead with ways to make the exam more effective – especially in countries with high smoking rates. Two new studies published this week show the progress that’s being made.

In Brazil, researchers in JAMA Network Open found that using broader criteria to determine who should get CT lung screening not only expanded the eligible population, but it also reduced racial disparities in screening’s effectiveness. 

Researchers compared three strategies for determining screening eligibility: two based on 2013 and 2021 USPSTF criteria, and one in which all ever-smokers ages 50-80 were screened, finding: 

  • Screening all ever-smokers generated the largest possible screening population (27.3M people) compared to USPSTF criteria for 2013 (5.1M) and 2021 (8.4M)
  • Number of life-years gained if lung cancer is averted due to screening was highest with all-screening (23 vs. 19 & 21)
  • But the all-screening strategy also had the highest number needed to screen to prevent one lung cancer death (472 vs 177 & 242)
  • The USPSTF 2021 criteria reduced (but did not eliminate) racial disparities; the USPSTF 2013 criteria produced the greatest disparity 

The authors said the results showed that CT lung cancer screening in Brazil could identify 57% of preventable lung cancer deaths if 22% of ever-smokers are screened. Their study should help the country decide which screening strategy to adopt. 

In a second paper in the same journal, researchers from China described how they performed CT lung cancer screening via opportunistic screening, offering low-dose CT scans to patients visiting their doctor for other reasons, such as a routine checkup or a health problem other than a pulmonary issue. Among 5.2k patients, researchers found that people who got opportunistic LDCT screening had:

  • 34% lower risk of lung cancer death by hazard ratio
  • 28% lower risk of all-cause mortality
  • 43% received their lung cancer diagnosis through opportunistic screening

The Takeaway

This week’s studies continue the positive progress toward CT lung cancer screening that’s being made around the world. Both offer different strategies for making screening even more effective, and add to the growing weight of evidence in favor of population-based lung screening.

AI Powers Opportunistic Screening

The growing power of AI is opening up new possibilities for opportunistic screening – the detection of pathology using data acquired for other clinical indications. The potential of CT-based opportunistic screening – and AI’s role in its growth – was explored in a session at RSNA 2023.

What’s so interesting about opportunistic screening with CT? 

  • As one of imaging’s most widely used modalities, CT scans are already being acquired for many clinical indications, collecting body composition data on muscle, fat, and bone that can be biomarkers for hidden pathology. 

What’s more, AI-based tools are replacing many of the onerous manual measurement tasks that previously required radiologist involvement. There are four primary biomarkers for opportunistic screening, which are typically related to several major pathologies, said Perry Pickhardt, MD, of the University of Wisconsin-Madison, who led off the RSNA session:

  • Skeletal muscle density (sarcopenia)
  • Hard calcified plaque, either coronary or aortic (cardiovascular risk)
  • Visceral fat (cardiovascular risk)
  • Bone mineral density (osteoporosis and fractures) 

But what about the economics of opportunistic screening? 

  • A recent study in Abdominal Radiology found that in a hypothetical cohort of 55-year-old men and women, AI-assisted opportunistic screening for cardiovascular disease, osteoporosis, and sarcopenia was more cost-effective compared to both “no-treatment” and “statins for all” strategies – even assuming a $250/scan charge for use of AI.

But there are barriers to opportunistic screening, despite its potential. In a follow-up talk, Arun Krishnaraj, MD, of UVA Health in Virginia said he believes fully automated AI algorithms are needed to avoid putting the burden on radiologists. 

And the regulatory environment for AI tools is complex and must be navigated, said Bernardo Bizzo, MD, PhD, of Mass General Brigham.

Ready to take the plunge? The steps for setting up a screening program using AI were described in another talk by John Garrett, PhD, Pickhardt’s colleague at UW-Madison. This includes: 

  • Normalizing your data for AI tools
  • Identifying the anatomical landmarks you want to focus on
  • Automatically segmenting areas of interest
  • Making the biomarker measurements
  • Plugging your data into AI models to predict outcomes and risk-stratify patients

The Takeaway

Opportunistic screening has the potential to flip the script in the debate over radiology utilization, making imaging exams more cost-effective while detecting additional pathology and paving the way to more personalized medicine. With AI’s help, radiologists have the opportunity to place themselves at the center of modern healthcare. 

AI’s Impact on Breast Screening

One of the most exciting radiology use cases for AI is in breast screening. At last week’s RSNA 2023 show, a paper highlighted the technology’s potential for helping breast imagers focus on cases more likely to have cancer.

Looking for cancers on screening mammography has been compared to finding a needle in a haystack, and as such it’s considered to be one of the areas where AI can best help. 

  • One of the earliest use cases was in identifying suspicious breast lesions during radiologist interpretation (remember computer-aided detection?), but more recently researchers have focused on using AI as a triage tool, by identifying cases most likely to be normal that could be removed from the radiologist’s urgent worklist. Studies have found that 30-40% of breast screening cases could be read by AI alone or triaged to a low-suspicion list.

But what impact would AI-based breast screening triage have on radiologist metrics such as recall rate? 

  • To answer this question, researchers from NYU Langone Health prospectively tested their homegrown AI algorithm for analyzing DBT screening cases.

The algorithm was trained to identify extremely low-risk cases that could be triaged from the worklist while more complex cases where the AI was uncertain were sent to radiologists, who knew in advance the cases they were reading were more complicated. In 11.7k screening mammograms, researchers examined recall rates over two periods, one before AI triage and one after, finding: 

  • The overall recall rate went from 13% before the triage period to 15% after 
  • Recall rates for complex cases went from 17% to 20%
  • Recall rates for extremely low-risk studies went from 6% to 5%
  • There were no statistically significant differences in any of the comparisons
  • No change in median self-reported perceived difficulty of reading from the triage lists compared to non-triage list, regardless of years of experience

In future work, the NYU Langone researchers will continue their study to look at AI’s impact on cancer detection rate, biopsy rate, positive predictive value, and other metrics.

The Takeaway

The NYU Langone study puts a US spin on research like MASAI from Sweden, in which AI was able to reduce radiologists’ breast screening workload by 44%. Given the differences in screening protocols between the US and Europe, it’s important to assess how AI affects workload between the regions.

Further work is needed in this ongoing study, but early results indicate that AI can triage complex cases without having an undue impact on recall rate or self-perceived difficulty in interpreting exams – a surrogate measure for burnout.

Get every issue of The Imaging Wire, delivered right to your inbox.

You might also like..

Select All

You're signed up!

It's great to have you as a reader. Check your inbox for a welcome email.

-- The Imaging Wire team

You're all set!