Time to Embrace X-Ray AI for Early Lung Cancer Detection

Each year approximately 2 billion chest X-rays are performed globally. They are fast, noninvasive, and a relatively inexpensive radiological examination for front-line diagnostics in outpatient, emergency, or community settings. 

  • But beyond the simplicity of CXR lies a secret weapon in the fight against lung cancer: artificial intelligence. 

Be it serendipitous screening, opportunistic detection, or incidental identification, there is potential for AI incorporated into CXR to screen patients for disease when they are getting an unrelated medical examination. 

  • This could include the patient in the ER undergoing a CXR for suspected broken ribs after a fall, or an individual referred by their doctor for a CXR with suspected pneumonia. These people, without symptoms, may unknowingly have small yet growing pulmonary nodules. 

AI can find these abnormalities and flag them to clinicians as a suspicious finding for further investigation. 

  • This has the potential to find nodules earlier, in the very early stages of lung cancer when it is easier to biopsy or treat. 

Indeed, only 5.8% of eligible ex-smoking Americans undergo CT-based lung cancer screening. 

  • So the ability to cast the detection net wider through incidental pulmonary nodule detection has significant merits. 

Early global studies into the power of AI for incidental pulmonary nodules (IPNs) shows exciting promise.

  • The latest evidence shows one lung cancer detected for every 1,120 CXRs has major implications to diagnose and treat people earlier – and potentially save lives. 

The qXR-LN chest X-ray AI algorithm from Qure.ai is raising the bar for incidental pulmonary nodule detection. In a retrospective study performed on missed or mislabelled US CXR data, qXR-LN achieved an impressive negative predictive value of 96% and an AUC score of 0.99 for detection of pulmonary nodules. 

  • By acting as a second pair of eyes for radiologists, qXR-LN can help detect subtle anatomical anomalies that may otherwise go unnoticed, particularly in asymptomatic patients.

The FDA-cleared solution serves as a crucial second reader, assisting in the review of chest radiographs on the frontal projection. 

  • In another multicenter study involving 40 sites from across the U.S., the qXR-LN algorithm demonstrated an impressive AUC of 94% for scan-level nodule detection, highlighting its potential to significantly impact patient outcomes by identifying early signs of lung cancer that can be easily missed. 

The Takeaway 

By harnessing the power of AI for opportunistic lung cancer surveillance, healthcare providers can adopt a proactive approach to early detection, without significant new investment, and ultimately improving patient survival rates.

Qure.ai will be exhibiting at RSNA 2024, December 1-4. Visit booth #4941 for discussion, debate, and demonstrations.

Sources

AI-based radiodiagnosis using Chest X-rays: A review. Big Data Analytics for Social Impact, Volume 6 – 2023

Results from a feasibility study for integrated TB & lung cancer screening in Vietnam, Abstract presentation UNION CONF 2024: 2560   

Performance of a Chest Radiography AI Algorithm for Detection of Missed or Mislabelled Findings: A Multicenter Study. Diagnostics 12, no. 9 (2022): 2086

Qure.ai. Qure.ai’s AI-Driven Chest X-ray Solution Receives FDA Clearance for Enhanced Lung Nodule Detection. Qure.ai, January 7, 2024

Mammography AI Predicts Cancer Before It’s Detected

A new study highlights the predictive power of AI for mammography screening – before cancers are even detected. Researchers in a study JAMA Network Open found that risk scores generated by Lunit’s Insight MMG algorithm predicted which women would develop breast cancer – years before radiologists found it on mammograms. 

Mammography image analysis has always been one of the most promising use cases for AI – even dating back to the days of computer-aided detection in the early 2000s. 

  • Most mammography AI developers have focused on helping radiologists identify suspicious lesions on mammograms, or triage low-risk studies so they don’t require extra review.

But a funny thing has happened during clinical use of these algorithms – radiologists found that AI-generated risk scores appeared to predict future breast cancers before they could be seen on mammograms. 

  • Insight MMG marks areas of concern and generates a risk score of 0-100 for the presence of breast cancer (higher numbers are worse). 

Researchers decided to investigate the risk scores’ predictive power by applying Insight MMG to screening mammography exams acquired in the BreastScreen Norway program over three biennial rounds of screening from 2004 to 2018. 

  • They then correlated AI risk scores to clinical outcomes in exams for 116k women for up to six years after the initial screening round.

Major findings of the study included … 

  • AI risk scores were higher for women who later developed cancer, 4-6 years before the cancer was detected.
  • The difference in risk scores increased over three screening rounds, from 21 points in the first round to 79 points in the third round.
  • Risk scores had very high accuracy by the third round (AUC=0.93).
  • AI scores were more accurate than existing risk tools like the Tyrer-Cuzick model.

How could AI risk scores be used in clinical practice? 

  • Women without detectable cancer but with high scores could be directed to shorter screening intervals or screening with supplemental modalities like ultrasound or MRI.

The Takeaway
It’s hard to overstate the significance of the new results. While AI for direct mammography image interpretation still seems to be having trouble catching on (just like CAD did), risk prediction is a use case that could direct more effective breast screening. The study is also a major coup for Lunit, continuing a string of impressive clinical results with the company’s technology.

AI Recon Cuts CT Radiation Dose

Artificial intelligence got its start in radiology as a tool to help medical image interpretation, but much of AI’s recent progress is in data reconstruction: improving images before radiologists even get to see them. Two new studies underscore the potential of AI-based reconstruction to reduce CT radiation dose while preserving image quality. 

Radiology vendors and clinicians have been remarkably successful in reducing CT radiation dose over the past two decades, but there’s always room for improvement. 

  • In addition to adjusting CT scanning protocols like tube voltage and current, data reconstruction protocols have been introduced to take images acquired at lower radiation levels and “boost” them to look like full-dose images. 

The arrival of AI and other deep learning-based technologies has turbocharged these efforts. 

They compared DLIR operating at high strength to GE’s older ASiR-V protocol in CCTA scans with lower tube voltage (80 kVp), finding that deep learning reconstruction led to …

  • 42% reduction in radiation dose (2.36 mSv vs. 4.07)
  • 13% reduction in contrast dose (50 mL vs. 58 mL).
  • Better signal- and contrast-to-noise ratios.
  • Higher image quality ratings.

In the second study, researchers from China including two employees of United Imaging Healthcare used a deep learning reconstruction algorithm to test ultralow-dose CT scans for coronary artery calcium scoring. 

  • They wanted to see if CAC scoring could be performed with lower tube voltage and current (80 kVp/20 mAs) and how the protocol compared to existing low-dose scans.

In tests with 156 patients, they found the ultralow-dose protocol produced …

  • Lower radiation dose (0.09 vs. 0.49 mSv).
  • No difference in CAC scoring or risk categorization. 
  • Higher contrast-to-noise ratio.

The Takeaway

AI-based data reconstruction gives radiologists the best of both worlds: lower radiation dose with better-quality images. These two new studies illustrate AI’s potential for lowering CT dose to previously unheard-of levels, with major benefits for patients.

Imaging News from ESC 2024

The European Society of Cardiology annual meeting concluded on September 2 in London, with around 32k clinicians from 171 countries attending some 4.4k presentations. Organizers reported that attendance finally rebounded to pre-COVID numbers. 

While much of ESC 2024 focused on treatments for cardiovascular disease, diagnosis with medical imaging still played a prominent role. 

  • Cardiac CT dominated many ESC sessions, and AI showed it is nearly as hot in cardiology as it is in radiology. 

Major imaging-related ESC presentations included…

  • A track on cardiac CT that underscored CT’s prognostic value:
    • Myocardial revascularization patients who got FFR-CT had lower hazard ratios for MACE and all-cause mortality (HR=0.73 and 0.48).
    • Incidental coronary artery anomalies appeared on 1.45% of CCTA scans for patients with suspected coronary artery disease.
  • AI flexed its muscles in a machine learning track:
    • AI of low-dose CT scans had an AUC of 0.95 for predicting pulmonary congestion, a sign of acute heart failure. 
    • Echocardiography AI identified HFpEF with higher AUC than clinical models (0.75 vs. 0.69).
    • AI of transthoracic echo detected hypertrophic cardiomyopathy with AUC=0.85.

Another ESC hot topic was CT for calculating coronary artery calcium (CAC) scores, a possible predictor of heart disease. Sessions found … 

  • AI-generated volumetry of cardiac chambers based on CAC scans better predicted cardiovascular events than Agatston scores over 15 years of follow-up in an analysis of 5.8k patients from the MESA study. 
  • AI-CAC with CT was comparable to cardiac MRI read by humans for predicting atrial fibrillation (0.802 vs. 0.798) and stroke (0.762 vs. 0.751) over 15 years, which could give an edge to AI-CAC given its automated nature.
  • An AI algorithm enabled opportunistic screening of CAC quantification from non-gated chest CT scans of 631 patients, finding high CAC scores in 13%. Many got statins, while 22 got additional imaging and 2 intervention.
  • AI-generated CAC scores were also highlighted in a Polish study, detecting CAC on contrast CT at a rate comparable to humans on non-contrast CT (77% vs. 79%), possibly eliminating the need for additional non-contrast CT.  

The Takeaway

This week’s ESC 2024 sessions demonstrate the vital role of imaging in diagnosing and treating cardiovascular disease. While radiologists may not control the patients, they can always apply knowledge of advances in other disciplines to their work.

AI Detects Interval Cancer on Mammograms

In yet another demonstration of AI’s potential to improve mammography screening, a new study in Radiology shows that Lunit’s Insight MMG algorithm detected nearly a quarter of interval cancers missed by radiologists on regular breast screening exams. 

Breast screening is one of healthcare’s most challenging cancer screening exams, and for decades has been under attack by skeptics who question its life-saving benefit relative to “harms” like false-positive biopsies.  

  • But AI has the potential to change the cost-benefit equation by detecting a higher percentage of early-stage cancers and improving breast cancer survival rates. 

Indeed, 2024 has been a watershed year for mammography AI. 

U.K. researchers used Insight MMG (also used in the BreastScreen Norway trial) to analyze 2.1k screening mammograms, of which 25% were interval cancers (cancers occurring between screening rounds) and the rest normal. 

  • The AI algorithm generates risk scores from 0-100, with higher scores indicating likelihood of malignancy, and this study was set at a 96% specificity threshold, equivalent to the average 4% recall rate in the U.K. national breast screening program.

In analyzing the results, researchers found … 

  • AI flagged 24% of the interval cancers and correctly localized 77%.
  • AI localized a higher proportion of node-positive than node-negative cancers (24% vs. 16%).
  • Invasive tumors had higher median risk scores than noninvasive (62 vs. 33), with median scores of 26 for normal mammograms.

Researchers also tested AI at a lower specificity threshold of 90%. 

  • AI detected more interval cancers at this level, but in real-world practice this would bump up recall rates.  

It’s also worth noting that Insight MMG is designed for the analysis of 2D digital mammography, which is more common in Europe than DBT. 

  • For the U.S., Lunit is emphasizing its recently cleared Insight DBT algorithm, which may perform differently.  

The Takeaway

As with the MASAI and BreastScreen Norway results, the new study points to an exciting role for AI in making mammography screening more accurate with less drain on radiologist resources. But as with those studies, the new results must be interpreted against Europe’s double-reading paradigm, which differs from the single-reading protocol used in the U.S. 

FDA Keeps Pace on AI Approvals

The FDA has updated its list of AI- and machine learning-enabled medical devices that have received regulatory authorization. The list is a closely watched barometer of the health of the AI sector, and the update shows the FDA is keeping a brisk pace of authorizations.

The FDA has maintained double-digit growth of AI authorizations for the last several years, a pace that reflects the growing number of submissions it’s getting from AI developers. 

  • Indeed, data compiled by regulatory expert Bradley Merrill Thompson show how the number of FDA authorizations has been growing rapidly since the dawn of the medical AI era in around 2016 (see also our article on AI safety below). 

The new FDA numbers show that …

  • The FDA has now authorized 950 AI/ML-enabled devices since it began keeping track
  • Device authorizations are up 15% for the first half of 2024 compared to the same period the year before (107 vs. 93)
  • The pace could grow even faster in late 2024 – in 2023, FDA in the second half authorized 126 devices, up 35% over the first half
  • At that pace, the FDA should hit just over 250 total authorizations in 2024 
  • This would represent 14% growth over 220 authorizations in 2023, and compares to growth of 14% in 2022 and 15% in 2021
  • As with past updates, radiology makes up the lion’s share of AI/ML authorizations, but had a 73% share in the first half, down from 80% for all of 2023
  • Siemens Healthineers led in all H1 2024 clearances with 11, bringing its total to 70 (66 for Siemens and four for Varian). GE HealthCare remains the leader with 80 total clearances after adding three in H1 2024 (GE’s total includes companies it has acquired, like Caption Health and MIM Software). There’s a big drop off after GE and Siemens, including Canon Medical (30), Aidoc (24), and Philips (24).

The FDA’s list includes both software-only algorithms as well as hardware devices like scanners that have built-in AI capabilities, such as a mobile X-ray unit that can alert users to emergent conditions. 

  • Indeed, many of the authorizations on the FDA’s list are for updated versions of already-cleared products rather than brand-new solutions – a trend that tends to inflate radiology’s share of approvals.

The Takeaway

The new FDA numbers on AI/ML regulatory authorizations are significant not only for revealing the growth in approvals, but also because the agency appears to be releasing the updates more frequently – perhaps a sign it is practicing what it preaches when it comes to AI openness and transparency. 

Better Prostate MRI with AI

A homegrown AI algorithm was able to detect clinically significant prostate cancer on MRI scans with the same accuracy as experienced radiologists. In a new study in Radiology, researchers say the algorithm could improve radiologists’ ability to detect prostate cancer on MRI, with fewer false positives.

In past issues of The Imaging Wire, we’ve discussed the need to improve on existing tools like PSA tests to make prostate cancer screening more precise with fewer false positives and less need for patient work-up.

  • Adding MRI to prostate screening protocols is a step forward, but MRI is an expensive technology that requires experienced radiologists to interpret.

Could AI help? In the new study, researchers tested a deep learning algorithm developed at the Mayo Clinic to detect clinically significant prostate cancer on multiparametric (mpMRI) scans.

  • In an interesting wrinkle, the Mayo algorithm does not indicate tumor location, so a second algorithm – called Grad-CAM – was employed to localize tumors.

The Mayo algorithm was trained on a population of 5k patients with a cancer prevalence similar to a screening population, then tested in an external test set of 204 patients, finding …

  • No statistically significant difference in performance between the Mayo algorithm and radiologists based on AUC (0.86 vs. 0.84, p=0.68)
  • The highest AUC was with the combination of AI and radiologists (0.89, p<0.001)
  • The Grad-CAM algorithm was accurate in localizing 56 of 58 true-positive exams

An editorial noted that the study employed the Mayo algorithm on multiparametric MRI exams.

  • Prostate cancer imaging is moving from mpMRI toward biparametric MRI (bpMRI) due to its faster scan times and lack of contrast, and if validated on bpMRI, AI’s impact could be even more dramatic.

The Takeaway
The current study illustrates the exciting developments underway to make prostate imaging more accurate and easier to perform. They also support the technology evolution that could one day make prostate cancer screening a more widely accepted test.

US + Mammo vs. Mammo + AI for Dense Breasts

Artificial intelligence may represent radiology’s future, but for at least one clinical application traditional imaging seems to be the present. In a new study in Radiology, ultrasound was more effective than AI for supplemental imaging of women with dense breast tissue. 

Dense breast tissue has long presented problems for breast imaging specialists. 

  • Women with dense breasts are at higher risk of breast cancer, but traditional screening modalities like X-ray mammography don’t work very well (sensitivity of 30-48%), creating the need for supplemental imaging tools like ultrasound and MRI.

In the new study, researchers from South Korea tested the use of Lunit’s Insight MMG mammography AI algorithm in 5.7k women without symptoms who had breast tissue classified as heterogeneously (63%) or extremely dense (37%). 

  • AI’s performance was compared to both mammography alone as well as to mammography with ultrasound, one of the gold-standard modalities for imaging women with dense breasts. 

All in all, researchers found …

  • Mammography with AI had lower sensitivity than mammography with ultrasound but slightly better than mammography alone (61% vs. 97% vs. 58%)
  • Mammography with AI had a lower cancer detection rate per 1k women but higher than mammography alone (3.5 vs. 5.6 vs. 3.3)
  • Mammography with AI missed 12 cancers detected with mammography with ultrasound
  • Mammography with AI had the highest specificity (95% vs. 78% vs. 94%)
  • And the lowest abnormal interpretation rate (5% vs. 23% vs. 6%)

The results show that while AI can help radiologists interpret screening mammography for most women, at present it can’t compensate for mammography’s low sensitivity in women with dense breast tissue.

In an editorial, breast radiologists Gary Whitman, MD, and Stamatia Destounis, MD, observed that supplemental imaging of women with dense breasts is getting more attention as the FDA prepares to implement breast density notification rules in September. 

  • They recommended follow-up studies with other AI algorithms, more patients, and a longer follow-up period. 

The Takeaway

As with a recent study on AI and teleradiology, the current research is a good step toward real-world evaluation of AI for a specific use case. While AI in this instance didn’t improve mammography’s sensitivity in women with dense breast tissue, it could carve out a role reducing false positives for these women who get mammography and ultrasound.

AI Detects Incidental PE

In one of the most famous quotes about radiology and artificial intelligence, Curtis Langlotz, MD, PhD, once said that AI will not replace radiologists, but radiologists with AI will replace those without it. A new study in AJR illustrates his point, showing that radiologists using a commercially available AI algorithm had higher rates of detecting incidental pulmonary embolism on CT scans. 

AI is being applied to many clinical use cases in radiology, but one of the more promising is for detecting and triaging emergent conditions that might have escaped the radiologist’s attention on initial interpretations.

  • Pulmonary embolism is one such condition. PE can be life-threatening and occurs in 1.3-2.6% of routine contrast-enhanced CT exams, but radiologist miss rates range from 10-75% depending on patient population.

AI can help by automatically analyzing CT scans and alerting radiologists to PEs when they can be treated quickly; the FDA has authorized several algorithms for this clinical use. 

  • In the new paper, researchers conducted a prospective real-world study of Aidoc’s BriefCase for iPE Triage at the University of Alabama at Birmingham. 

Researchers tracked rates of PE detection in 4.3k patients before and after AI implementation in 2021, finding … 

  • Radiologists saw their sensitivity for PE detection go up after AI implementation (80% vs. 96%) 
  • Specificity was unchanged (99.1% vs. 99.9%, p=0.58)
  • The PE incidence rate went up (1.4% vs. 1.6%)
  • There was no statistically significant difference in report turnaround time before and after AI (65 vs. 78 minutes, p=0.26)

The study echoes findings from 2023, when researchers from UT Southwestern also used the Aidoc algorithm for PE detection, in that case finding that AI cut times for report turnaround and patient waits. 

The Takeaway

While studies showing AI’s value to radiologists are commonplace, many of them are performed under controlled conditions that don’t translate to the real world. The current study is significant because it shows that with AI, radiologists can achieve near-perfect detection of a potentially life-threatening condition without a negative impact on workflow.

Better Prostate MRI Tools

In past issues of The Imaging Wire, we’ve discussed some of the challenges to prostate cancer screening that have limited its wider adoption. But researchers continue to develop new tools for prostate imaging – particularly with MRI – that could flip the script. 

Three new studies were published in just the last week focusing on prostate MRI, two involving AI image analysis.

In a new study in The Lancet Oncology, researchers presented results from AI algorithms developed for the Prostate Imaging—Cancer Artificial Intelligence (PI-CAI) Challenge.

  • PI-CAI pitted teams from around the world in a competition to develop the best prostate AI algorithms, with results presented at recent RSNA and ECR conferences. 

Researchers measured the ensemble performance of top-performing PI-CAI algorithms for detecting clinically significant prostate cancer against 62 radiologists who used the PI-RADS system in a population of 400 cases, finding that AI …

  • Had performance superior to radiologists (AUROC=0.91 vs. 0.86)
  • Generated 50% fewer false-positive results
  • Detected 20% fewer low-grade cases 

Broader use of prostate AI could reduce inter-reader variability and need for experienced radiologists to diagnose prostate cancer.

In the next study, in the Journal of Urology, researchers tested Avenda Health’s Unfold AI cancer mapping algorithm to measure the extent of tumors by analyzing their margins on MRI scans, finding that compared to physicians, AI … 

  • Had higher accuracy for defining tumor margins compared to two manual methods (85% vs. 67% and 76%)
  • Reduced underestimations of cancer extent with a significantly higher negative margin rate (73% vs. 1.6%)

AI wasn’t used in the final study, but this one could be the most important of the three due to its potential economic impact on prostate MRI.

  • Canadian researchers in Radiology tested a biparametric prostate MRI protocol that avoids the use of gadolinium contrast against multiparametric contrast-based MRI for guiding prostate biopsy. 

They compared the protocols in 1.5k patients with prostate lesions undergoing biopsy, finding…

  • No statistically significant difference in PPV between bpMRI and mpMRI for all prostate cancer (55% vs. 56%, p=0.61) 
  • No difference for clinically significant prostate cancer (34% vs. 34%, p=0.97). 

They concluded that bpMRI offers lower costs and could improve access to prostate MRI by making the scans easier to perform.

The Takeaway

The advances in AI and MRI protocols shown in the new studies could easily be applied to prostate cancer screening, making it more economical, accessible, and clinically effective.  

Get every issue of The Imaging Wire, delivered right to your inbox.

You might also like..

Select All

You're signed up!

It's great to have you as a reader. Check your inbox for a welcome email.

-- The Imaging Wire team

You're all set!