Accessing Quality Data for AI Training

One of the biggest roadblocks in medical AI development is the lack of high-quality, diverse data for these technologies to train on.

What Is the Issue with Data Access?

Artificial Intelligence (AI) has emerged as a game-changer in the realm of medical imaging, with immense potential to revolutionize clinical practices. AI-powered medical imaging can efficiently identify intricate patterns within data and provide quantitative assessments of disease biomarkers. This technology not only enhances the accuracy of diagnosis but can also significantly speed up the diagnostic process, ultimately improving patient outcomes.

While the landscape is promising, medical innovators grapple with challenges in accessing high-quality, diverse, and timely data, which is vital for training AI and driving progress.

A 2019 study from the Massachusetts Institute of Technology found that over half of medical AI studies predominantly relied on databases from high-income countries, particularly the United States and China. If models trained on homogenous data are used clinically in diverse populations, then it could pose a risk to patients and worsen health inequalities experienced by underrepresented groups. In the United States, If the Food and Drug Administration deems these risks to be too high, then they could even reject a product’s application for approval. 

In trying to get hold of the best training data, AI developers, particularly startups and individual researchers, face a web of complexities, including legal, ethical, and technical considerations. Issues like data privacy, security, interoperability, and data quality compound these challenges, all of which are crucial in the effective and responsible utilization of healthcare data.

One company working to overcome these hurdles in hope of accelerated and high-quality innovations is Gradient Health.

Gradient Health’s Approach

Gradient Health offers AI developers instant access to one of the world’s largest libraries of anonymized medical images, sourced from hundreds of global hospitals, clinics, and research centers. This data is meticulously de-identified for compliance and can be tailored by vendors to suit their project’s needs and exported in machine learning-ready DICOM + JSON formats.

By partnering with Gradient Health, innovators can use these extensive, diverse datasets to train and validate their AI algorithms, mitigating bias in medical AI and advancing the development of precise, high-quality medical solutions.

Gaining access to top-tier data at the outset of the development process promises long-term benefits. Here’s how:

  • Expand Market Presence: Access the latest cross-vendor datasets to develop medical innovations, expanding your market share.
  • Global Expansion: Enter new regions swiftly with locally sourced data from your target markets, accelerating your global reach.
  • Competitive Edge: Obtain on-demand training data for imaging modalities and disease areas, facilitating product portfolio expansion.
  • Speed to Market: Quickly acquire data for product training and validation, reducing sourcing time and expediting regulatory clearances for faster patient delivery.

“After looking for a data provider for many weeks, I was not able to get even a sample delivery within one month. I was immensely glad to work with Gradient and go from first contact to final delivery within one week!” said Julien Schmidt, chief operations officer and co-founder at Mango Medical.

The Outlook

In recent years, medical AI has experienced significant growth. Innovations in medical imaging in particular have played a pivotal role in enabling healthcare professionals to identify diseases earlier and more accurately in patients with a range of conditions. 

Gradient Health offers a data-compliant, intuitive platform for AI developers, facilitating access to the essential data required to train these critical technologies. This approach holds the potential to save time, resources, and, most importantly, lives. 

More information about Gradient Health is available on the company’s website. They will also be exhibiting at RSNA 2023 in booth #5149 in the South Hall.

Unpacking the Biden Administration’s New AI Order

It seems like watershed moments in AI are happening on a weekly basis now. This time, the big news is the Biden Administration’s sweeping executive order that directs federal regulation of AI across multiple industries – including healthcare. 

The order comes as AI is becoming a clinical reality for many applications. 

  • The number of AI algorithms cleared by the FDA has been surging, and clinicians – particularly radiologists – are getting access to new tools on an almost daily basis.

But AI’s rapid growth – and in particular the rise of generative AI technologies like ChatGPT – have raised questions about its future impact on patient care and whether the FDA’s existing regulatory structure is suitable for such a new technology. 

The executive order appears to be an effort to get ahead of these trends. When it comes to healthcare, its major elements are summarized in a succinct analysis of the plan by Health Law Advisor. In short, the order: 

  • Calls on HHS to work with the VA and Department of Defense to create an HHS task force on AI within 90 days
  • Requires the task force to develop a strategic plan within a year that could include regulatory action regarding the deployment and use of AI for applications such as healthcare delivery, research, and drug and device safety
  • Orders HHS to develop a strategy within 180 days to determine if AI-enabled technologies in healthcare “maintain appropriate levels of quality” – basically, a review of the FDA’s authorization process
  • Requires HHS to set up an AI safety program within a year, in conjunction with patient safety organizations
  • Tells HHS to develop a strategy for regulating AI in drug development

Most analysts are viewing the executive order as the Biden Administration’s attempt to manage both risk and opportunity. 

  • The risk is that AI developers lose control of the technology, with consequences such as patients potentially harmed by inaccurate AI. The opportunity is for the US to become a leader in AI development by developing a long-term AI strategy. 

The Takeaway

The question is whether an industry that’s as fast-moving as AI – with headlines changing by the week – will lend itself to the sort of centralized long-term planning envisioned in the Biden Administration’s executive order. Time will tell.

Predicting the Future of Radiology AI

Making predictions is a messy business (just ask Geoffrey Hinton). So we’re always appreciative whenever key opinion leaders stick their necks out to offer thoughts on where radiology is headed and the major trends that will shape the specialty’s future. 

Two of radiology’s top thought leaders on AI and imaging informatics – Curtis Langlotz, MD, PhD, and Paul Chang, MD – gaze into the crystal ball in two articles published this week in Radiology as part of the journal’s centennial celebration. 

Langlotz offers 10 predictions on radiology AI’s future, briefly summarized below:

  • Radiology will continue its leadership position when it comes to AI adoption in medicine, as evidenced by its dominance of FDA marketing authorizations
  • Virtual assistants will help radiologists draft reports – and reduce burnout
  • Radiology workstations will become cloud-based cockpits that seamlessly unify image display, reporting, and AI
  • Large language models like ChatGPT will help patients better understand their radiology reports
  • The FDA will reform its regulation of AI to be more flexible and speed AI authorizations (see our article in The Wire below)
  • Large databases like the Medical Imaging and Data Resource Center (MIDRC) will spur data sharing and, in turn, more rapid AI development

Langlotz’s predictions are echoed by Chang’s accompanying article in Radiology in which he predicts the future of imaging informatics in the coming age. Like Langlotz, Chang sees the new array of AI-enabled tools as beneficial agents that will help radiologists manage growing workloads through dashboards, enhanced radiology reports, and workflow automation. 

The Takeaway

This week’s articles are required reading for anyone following the meteoric growth of AI in radiology. Far from Hinton’s dystopian view of a world without radiologists, Langlotz and Chang predict a future in which AI and IT technologies assist radiologists to do their jobs better and with less stress. We know which vision we prefer.

FDA Data Show AI Approval Boom

In the previous issue of The Imaging Wire, we discovered how venture capital investment in AI developers is fueling rapid growth in new AI applications for radiologists (despite a slowdown this year). 

This trend was underscored late last week with new data from the FDA showing strong growth in the number of regulatory authorizations of AI and machine learning-enabled devices in calendar 2023 compared to the year before. The findings show:

  • A resurgence of AI/ML authorizations this year, with over 30% growth compared to 14% in 2022 and 15% in 2021 – The last time authorizations grew this fast was in 2020 (+39%)
  • The FDA authorized 171 AI/ML-enabled devices in the past year. Of the total, 155 had final decision dates between August 1, 2022 to July 30, 2023, while 16 were reclassifications from prior periods 
  • Devices intended for radiology made up 79% of the total (122/155), an impressive number but down slightly compared to 87% in 2022 
  • Other medical specialities include cardiology (9%), neurology (5%), and gastroenterology/urology (4%)

One interesting wrinkle in the report was the fact that despite all the buzz around large language models for generative AI, the FDA has yet to authorize a device that uses generative AI or that is powered by LLMs. 

The Takeaway

The FDA’s new report confirms that radiology AI shows no sign of slowing down, despite a drop in AI investment this year. 

The data also offer perspective on a JACR report last week predicting that by 2035 radiology could be seeing 350 new AI/ML product approvals for the year. Product approvals would only have to grow at about a 10% annual rate to hit that number – a figure that seems perfectly achievable given the new FDA report.

What’s Fueling AI’s Growth

It’s no secret that the rapid growth of AI in radiology is being fueled by venture capital firms eager to see a payoff for early investments in startup AI developers. But are there signs that VCs’ appetite for radiology AI is starting to wane?

Maybe. And maybe not. While one new analysis shows that AI investments slowed in 2023 compared to the year before, another predicts that over the long term, VC investing will spur a boom in AI development that is likely to transform radiology. 

First up is an update by Signify Research to its ongoing analysis of VC funding. The new numbers show that through Q3 2023, the number of medical imaging AI deals has fallen compared to Q3 2022 (24 vs. 40). 

  • Total funding has also fallen for the second straight year, to $501M year-to-date in 2023. That compares to $771M through the third quarter of 2022, and $1.1B through the corresponding quarter of 2021. 

On the other hand, the average deal size has grown to an all-time high of $20.9M, compared to 2022 ($15.4M) and 2021 ($18M). 

  • And one company – Rapid AI – joined the exclusive club of just 14 AI vendors that have raised over $100M with a $75M Series C round in July 2023. 

In a look forward at AI’s future, a new analysis in JACR by researchers from the ACR Data Science Institute (DSI) directly ties VC funding to healthcare AI software development, predicting that every $1B in funding translates into 11 new product approvals, with a six-year lag between funding and approval. 

  • And the authors forecast long-term growth: In 2022 there were 69 FDA-approved products, but by 2035, funding is expected to reach $31B for the year, resulting in the release of a staggering 350 new AI products that year.

Further, the ACR DSI authors see a virtuous cycle developing, as increasing AI adoption spurs more investment that creates more products available to help radiologists with their workloads. 

The Takeaway

The numbers from Signify and ACR DSI don’t match up exactly, but together they paint a picture of a market segment that continues to enjoy massive VC investment. While the precise numbers may fluctuate year to year, investor interest in medical imaging AI will fuel innovation that promises to transform how radiology is practiced in years to come.

Autonomous AI for Medical Imaging is Here. Should We Embrace It?

What is autonomous artificial intelligence, and is radiology ready for this new technology? In this paper, we explore one of the most exciting autonomous AI applications, ChestLink from Oxipit. 

What is Autonomous AI? 

Up to now, most interpretive AI solutions have focused on assisting radiologists with analyzing medical images. In this scenario, AI provides suggestions to radiologists and alerts them to suspicious areas, but the final diagnosis is the physician’s responsibility.

Autonomous AI flips the script by having AI run independently of the radiologist, such as by analyzing a large batch of chest X-ray exams for tuberculosis to screen out those certain to be normal. This can significantly reduce the primary care workload, where healthcare providers who offer preventive health checkups may see up to 80% of chest X-rays with no abnormalities. 

Autonomous AI frees the radiologist to focus on cases with suspicious pathology – with the potential of delivering a more accurate diagnosis to patients in real need.

One of the first of this new breed of autonomous AI is ChestLink from Oxipit. The solution received the CE Mark in March 2022, and more than a year later it is still the only AI application capable of autonomous performance. 

How ChestLink Works

ChestLink produces final chest X-ray reports on healthy patients with no involvement from human radiologists. The application only reports autonomously on chest X-ray studies where it is highly confident that the image does not include abnormalities. These studies are automatically removed from the reporting workflow. 

ChestLink enables radiologists to report on studies most likely to have abnormalities. In current clinical deployments, ChestLink automates 10-30% of all chest X-ray workflow. The exact percentage depends on the type of medical institution, with primary care facilities having the most potential for automation.

ChestLink Clinical Validation

ChestLink was trained on a dataset with over 500k images. In clinical validation studies, ChestLink consistently performed at 99%+ sensitivity.

A recent study published in Radiology highlighted the sensitivity of the application.

“The most surprising finding was just how sensitive this AI tool was for all kinds of chest disease. In fact, we could not find a single chest X-ray in our database where the algorithm made a major mistake. Furthermore, the AI tool had a sensitivity overall better than the clinical board-certified radiologists,” said study co-author Louis Lind Plesner, MD, from the Department of Radiology at the Herlev and Gentofte Hospital in Copenhagen, Denmark.

In this study ChestLink autonomously reported on 28% of all normal studies.

In another study at the Oulu University Hospital in Finland, researchers concluded that AI could reliably remove 36.4% of normal chest X-rays from the reporting workflow with a minimal number of false negatives, leading to effectively no compromise on patient safety. 

Safe Path to AI Autonomy

Oxipit ChestLink is currently used in healthcare facilities in the Netherlands, Finland, Lithuania, and other European countries, and is in the trial phase for deployment in one of the leading hospitals in England.

ChestLink follows a three-stage framework for clinical deployment.

  • Retrospective analysis. ChestLink analyzes a couple of years worth (100k+) of historic chest x-ray studies at the medical institution. In this analysis the product is validated on real-world data. It also realistically estimates what fraction of reporting scope can be automated.
  • Semi-autonomous operations. The application moves into prospective settings, analyzing images in near-real time. ChestLink produces preliminary reports for healthy patients, which may then be approved by a certified clinician.
  • Autonomous operations. The application autonomously reports on high-confidence healthy patient studies. The application performance is monitored in real-time with analytical tools.

Are We There Yet?

ChestLink aims to address the shortage of clinical radiologists worldwide, which has led to a substantial decline in care quality.

In the UK, the NHS currently faces a massive 33% shortfall in its radiology workforce. Nearly 71% of clinical directors of UK radiology departments feel that they do not have a sufficient number of radiologists to deliver safe and effective patient care.

ChestLink offers a safe pathway into autonomous operations by automating a significant and somewhat mundane portion of radiologist workflow without any negative effects for patient care. 

So should we embrace autonomous AI? The real question should be, can we afford not to? 

AI Hits Speed Bumps

There’s no question AI is the future of radiology. But AI’s drive to widespread clinical use is going to hit some speed bumps along the way.

This week is a case in point. Two studies were published showing AI’s limitations and underscoring the challenges faced in making AI an everyday clinical reality. 

In the first study, researchers found that radiologists outperformed four commercially available AI algorithms for analyzing chest X-rays (Annalise.ai, Milvue, Oxipit, and Siemens Healthineers) in a study of 2k patients in Radiology.

Researchers from Denmark found the AI tools had moderate to high sensitivity for three detection tasks: 

  1. airspace disease (72%-91%)
  2. pneumothorax (63%-90%)
  3. pleural effusion (62%-95%). 

But the algorithms also had higher false-positive rates and performance dropped in cases with smaller pathology and multiple findings. The findings are disappointing, especially since they got such widespread play in the mainstream media

But this week’s second study also brought worrisome news, this time in Radiology: Artificial Intelligence about an AI training method called foundation models that many hope holds the key to better algorithms. 

Foundation models are designed to address the challenge of finding enough high-quality data for AI training. Most algorithms are trained with actual de-identified clinical data that have been labeled and referenced to ground truth; foundation models are AI neural networks pre-trained with broad, unlabeled data and then fine-tuned with smaller volumes of more detailed data to perform specific tasks.

Researchers in the new study found that a chest X-ray algorithm trained on a foundation model with 800k images had lower performance than an algorithm trained with the CheXpert reference model in a group of 42.9k patients. The foundation model’s performance lagged for four possible results – no finding, pleural effusion, cardiomegaly, and pneumothorax – as follows…

  • Lower by 6.8-7.7% in females for the “no finding” result
  • Down by 10.7-11.6% in Black patients in detecting pleural effusion
  • Lower performance across all groups for classifying cardiomegaly

The decline in female and Black patients is particularly concerning given recent studies on bias and lack of generalizability for AI.  

The Takeaway

This week’s studies show that there’s not always going to be a clear road ahead for AI in its drive to routine clinical use. The study on foundation models in particular could have ramifications for AI developers looking for a shortcut to faster algorithm development. They may want to slow their roll. 

Predicting AI Performance

How can you predict whether an AI algorithm will fall short for a particular clinical use case such as detecting cancer? Researchers in Radiology took a crack at this conundrum by developing what they call an “uncertainty quantification” metric to predict when an AI algorithm might be less accurate. 

AI is rapidly moving into wider clinical use, with a number of exciting studies published in just the last few months showing how AI can help radiologists interpret screening mammograms or direct which women should get supplemental breast MRI

But AI isn’t infallible. And unlike a human radiologist who might be less confident in a particular diagnosis, an AI algorithm doesn’t have a built-in hedging mechanism.

So researchers from Denmark and the Netherlands decided to build one. They took publicly available AI algorithms and tweaked their code so they produced “uncertainty quantification” scores with their predictions. 

They then tested how well the scores predicted AI performance in a dataset of 13k images for three common tasks covering some of the deadliest types of cancer:

1) detecting pancreatic ductal adenocarcinoma on CT
2) detecting clinically significant prostate cancer on MRI
3) predicting pulmonary nodule malignancy on low-dose CT 

Researchers classified the highest 80% of the AI predictions as “certain,” and the remaining 20% as “uncertain,” and compared AI’s accuracy in both groups, finding … 

  • AI led to significant accuracy improvements in the “certain” group for pancreatic cancer (80% vs. 59%), prostate cancer (90% vs. 63%), and pulmonary nodule malignancy prediction (80% vs. 51%)
  • AI accuracy was comparable to clinicians when its predictions were “certain” (80% vs. 78%, P=0.07), but much worse when “uncertain” (50% vs. 68%, P<0.001)
  • Using AI to triage “uncertain” cases produced overall accuracy improvements for pancreatic and prostate cancer (+5%) and lung nodule malignancy prediction (+6%) compared to a no-triage scenario

How would uncertainty quantification be used in clinical practice? It could play a triage role, deprioritizing radiologist review of easier cases while helping them focus on more challenging studies. It’s a concept similar to the MASAI study of mammography AI.

The Takeaway

Like MASAI, the new findings present exciting new possibilities for AI implementation. They also present a framework within which AI can be implemented more safely by alerting clinicians to cases in which AI’s analysis might fall short – and enabling humans to step in and pick up the slack.  

Tipping Point for Breast AI?

Have we reached a tipping point when it comes to AI for breast screening? This week another study was published – this one in Radiology – demonstrating the value of AI for interpreting screening mammograms. 

Of all the medical imaging exams, breast screening probably could use the most help. Reading mammograms has been compared to looking for a needle in a haystack, with radiologists reviewing thousands of images before finding a single cancer. 

AI could help in multiple ways, either at the radiologist’s side during interpretation or by reviewing mammograms in advance, triaging the ones most likely to be normal while reserving suspicious exams for closer attention by radiologists (indeed, that was the approach used in the MASAI study in Sweden in August).

In the new study, UK researchers in the PERFORMS trial compared the performance of Lunit’s INSIGHT MMG AI algorithm to that of 552 radiologists in 240 test mammogram cases, finding that …

  • AI was comparable to radiologists for sensitivity (91% vs. 90%, P=0.26) and specificity (77% vs. 76%, P=0.85). 
  • There was no statistically significant difference in AUC (0.93 vs. 0.88, P=0.15)
  • AI and radiologists were comparable or no different with other metrics

Like the MASAI trial, the PERFORMS results show that AI could play an important role in breast screening. To that end, a new paper in European Journal of Radiology proposes a roadmap for implementing mammography AI as part of single-reader breast screening programs, offering suggestions on prospective clinical trials that should take place to prove breast AI is ready for widespread use in the NHS – and beyond. 

The Takeaway

It certainly does seem that AI for breast screening has reached a tipping point. Taken together, PERFORMS and MASAI show that mammography AI works well enough that “the days of double reading are numbered,” at least where it is practiced in Europe, as noted in an editorial by Liane Philpotts, MD

While double-reading isn’t practiced in the US, the PERFORMS protocol could be used to supplement non-specialized radiologists who don’t see that many mammograms, Philpotts notes. Either way, AI looks poised to make a major impact in breast screening on both sides of the Atlantic.

Radiation and Cancer Risk

New research on the cancer risk of low-dose ionizing radiation could have disturbing implications for those who are exposed to radiation on the job – including medical professionals. In a new study in BMJ, researchers found that nuclear workers exposed to occupational levels of radiation had a cancer mortality risk that was higher than previously estimated.

The link between low-dose radiation and cancer has long been controversial. Most studies on the radiation-cancer connection are based on Japanese atomic bomb survivors, many of whom were exposed to far higher levels of radiation than most people receive over their lifetimes – even those who work with ionizing radiation. 

The question is whether that data can be extrapolated to people exposed to much lower levels of radiation, such as nuclear workers, medical professionals, or even patients. To that end, researchers in the International Nuclear Workers Study (INWORKS) have been tracking low-dose radiation exposure and its connection to mortality in nearly 310k people in France, the UK, and the US who worked in the nuclear industry from 1944 to 2016.

INWORKS researchers previously published studies showing low-dose radiation exposure to be carcinogenic, but the new findings in BMJ offer an even stronger link. For the study, researchers tracked radiation exposure based on dosimetry badges worn by the workers and then rates of cancer mortality, and calculated rates of death from solid cancer based on their exposure levels, finding: 

  • Mortality risk was higher for solid cancers, at 52% per 1 Gy of exposure
  • Individuals who received the occupational radiation limit of 20 mSv per year would have a 5.2% increased solid cancer mortality rate over five years
  • There was a linear association between low-dose radiation exposure and cancer mortality, meaning that cancer mortality risk was also found at lower levels of exposure 
  • The dose-response association seen the study was even higher than in studies of atomic bomb survivors (52% vs. 32%)

The Takeaway

Even though the INWORKS study was conducted on nuclear workers rather than medical professionals, the findings could have implications for those who might be exposed to medical radiation, such as interventional radiologists and radiologic technologists. The study will undoubtedly be examined by radiation protection organizations and government regulators; the question is whether it leads to any changes in rules on occupational radiation exposure.

Get every issue of The Imaging Wire, delivered right to your inbox.

You might also like..

Select All

You're signed up!

It's great to have you as a reader. Check your inbox for a welcome email.

-- The Imaging Wire team

You're all set!