Prioritizing Length of Stay

A new study out of Cedars Sinai provided what might be the strongest evidence yet that imaging AI triage and prioritization tools can shorten inpatient hospitalizations, potentially bolstering AI’s economic and patient care value propositions outside of the radiology department.

The researchers analyzed patient length of stay (LOS) before and after Cedars Sinai adopted Aidoc’s triage AI solutions for intracranial hemorrhage (Nov 2017) and pulmonary embolism (Dec 2018), using 2016-2019 data from all inpatients who received noncontrast head CTs or chest CTAs.

  • ICH Results – Among Cedars Sinai’s 1,718 ICH patients (795 after ICH AI adoption), average LOS dropped by 11.9% from 10.92 to 9.62 days (vs. -5% for other head CT patients).
  • PE Results – Among Cedars Sinai’s 400 patients diagnosed with PE (170 after PE AI adoption), average LOS dropped by a massive 26.3% from 7.91 to 5.83 days (vs. +5.2% for other CCTA patients). 
  • Control Results – Control group patients with hip fractures saw smaller LOS decreases during the respective post-AI periods (-3% & -8.3%), while hospital-wide LOS seemed to trend upward (-2.5% & +10%).

The Takeaway

These results were strong enough for the authors to conclude that Cedars Sinai’s LOS improvements were likely “due to the triage software implementation.” 

Perhaps more importantly, some could also interpret these LOS reductions as evidence that Cedars Sinai’s triage AI adoption also improved its overall patient care and inpatient operating costs, given how these LOS reductions were likely achieved (faster diagnosis & treatment), the typical associations between hospital long stays and negative outcomes, and the fact that inpatient stays have a significant impact on hospital costs.

Intracranial Hemorrhage AI Efficiency

A new Radiology: Artificial Intelligence study out of Switzerland highlighted how Aidoc’s Intracranial Hemorrhage AI solution improved emergency department workflows, without hurting patient care. Even if that’s exactly what solutions like this are supposed to do, real world AI studies that go beyond sensitivity and specificity are still rare and worth some extra attention.

The Study – The researchers analyzed University Hospital of Basel’s non-contrast CT intracranial hemorrhage (ICH) exams before and after adopting the Aidoc ICH solution (n = 1,433 before & 3,017 after; ~14% ICH incidence w/ both groups).

Diagnostic Results – The Aidoc solution produced “practicable” overall diagnostic results (93% accuracy, 87.2% sensitivity, 93.9% specificity, and 97.8% NPV), although accuracy was lower with certain ICH subtypes (e.g. subdural hemorrhage 69.2%, 74/107). 

Efficiency Results – More notably, the Aidoc ICH solution “positively impacted” UBS’ ED workflows, with improvements across a range of key metrics:

  • Communicating critical findings: 63 vs. 70 minutes
  • Communicating acute ICH: 58 vs. 73 minutes
  • Overall turnaround time to rule out ICH: 164 vs. 175 minutes
  • Turnaround time to rule out ICH during working hours: 167 vs. 205 minutes

Next Steps – The authors called for further efforts to streamline their stroke workflows and to create a clear ICH AI framework, accurately noting that “AI tools are only as reliable as the environment they are deployed in.”

The Takeaway
The internet hasn’t always been kind to emergency AI tools, and academic studies have rarely focused on the workflow efficiency outcomes that many radiologists and emergency teams care about. That’s not the case with this study, which did a good job showing the diagnostic and workflow upsides of ICH AI adoption, and added a nice reminder that imaging teams share responsibility for AI outcomes.

Get every issue of The Imaging Wire, delivered right to your inbox.

You might also like..

Select All

You're signed up!

It's great to have you as a reader. Check your inbox for a welcome email.

-- The Imaging Wire team

You're all set!