Mammography AI Predicts Cancer Before It’s Detected

A new study highlights the predictive power of AI for mammography screening – before cancers are even detected. Researchers in a study JAMA Network Open found that risk scores generated by Lunit’s Insight MMG algorithm predicted which women would develop breast cancer – years before radiologists found it on mammograms. 

Mammography image analysis has always been one of the most promising use cases for AI – even dating back to the days of computer-aided detection in the early 2000s. 

  • Most mammography AI developers have focused on helping radiologists identify suspicious lesions on mammograms, or triage low-risk studies so they don’t require extra review.

But a funny thing has happened during clinical use of these algorithms – radiologists found that AI-generated risk scores appeared to predict future breast cancers before they could be seen on mammograms. 

  • Insight MMG marks areas of concern and generates a risk score of 0-100 for the presence of breast cancer (higher numbers are worse). 

Researchers decided to investigate the risk scores’ predictive power by applying Insight MMG to screening mammography exams acquired in the BreastScreen Norway program over three biennial rounds of screening from 2004 to 2018. 

  • They then correlated AI risk scores to clinical outcomes in exams for 116k women for up to six years after the initial screening round.

Major findings of the study included … 

  • AI risk scores were higher for women who later developed cancer, 4-6 years before the cancer was detected.
  • The difference in risk scores increased over three screening rounds, from 21 points in the first round to 79 points in the third round.
  • Risk scores had very high accuracy by the third round (AUC=0.93).
  • AI scores were more accurate than existing risk tools like the Tyrer-Cuzick model.

How could AI risk scores be used in clinical practice? 

  • Women without detectable cancer but with high scores could be directed to shorter screening intervals or screening with supplemental modalities like ultrasound or MRI.

The Takeaway
It’s hard to overstate the significance of the new results. While AI for direct mammography image interpretation still seems to be having trouble catching on (just like CAD did), risk prediction is a use case that could direct more effective breast screening. The study is also a major coup for Lunit, continuing a string of impressive clinical results with the company’s technology.

Breast Cancer Mortality Falls Again

New data from the American Cancer Society highlight the remarkable strides that have been made against breast cancer, with the U.S. death rate falling 44% over the last 33 years – saving over half a million lives. But the statistics also underscore the work that remains to be done, particularly with minority women. 

The fight against breast cancer has been one of public health’s major success stories.

  • High mammography screening uptake has led to early detection of cancers that can then be treated with revolutionary new therapies. 

Much of the credit for this success goes to the women’s health movement, which has conducted effective advocacy campaigns that have led to …

But breast cancer remains the third most common killer of women after heart disease and lung cancer, and there have been disturbing trends even as the overall death rate falls. 

  • Breast cancer incidence has been rising especially in younger women, and major disparities continue to be seen, particularly with survival in Black women.

The American Cancer Society’s new report represents the group’s biennial review of breast cancer statistics, finding … 

  • In 2024 there will be 311k new cases of invasive breast cancer, 56.5k cases of DCIS, and 42.3k deaths. 
  • The breast cancer mortality rate has fallen 44% from 1989 to 2022, from 33 deaths per 100k women to 19 deaths.
  • Some 518k breast cancer deaths have been averted.
  • The mortality rate ranges from 39% higher than average for Black women to 38% lower for Asian American Pacific Islander women. 
  • The mortality rate is slightly higher than average (0.5%) for White women.
  • The average breast cancer incidence rate is 132 per 100k women, but ranges from 5% higher for White women to 21% lower for Hispanic women.
  • Women 50 years and older will account for most invasive cases (84%) and deaths (91%).

The Takeaway

As Breast Cancer Awareness Month begins, women’s health advocates should be heartened by the progress that’s been made overall. But battles remain, from eliminating patient out-of-pocket payments for follow-up studies to addressing race-based disparities in breast cancer mortality. In many ways, the fight is just beginning. 

Get every issue of The Imaging Wire, delivered right to your inbox.

You might also like..

Select All

You're signed up!

It's great to have you as a reader. Check your inbox for a welcome email.

-- The Imaging Wire team

You're all set!