Echo AI COVID Predictions

A new JASE study showed that AI-based echocardiography measurements can be used to predict COVID patient mortality, but manual measurements performed by echo experts can’t. This could be seen as yet another “AI beats humans” study (or yet another COVID AI study), but it also gives important evidence of AI’s potential to reduce echo measurement variability.

Starting with transthoracic echocardiograms from 870 hospitalized COVID patients (13 hospitals, 9 countries, 27.4% who later died), the researchers utilized Ultromics’ EchoGo Core AI solution and a team of expert readers to measure left ventricular ejection fraction (LVEF) and LV longitudinal strain (LVLS). They then analyzed the measurements and applied them to mortality prediction models, finding that the AI-based measurements:

  • Were “significant predictors” of patient mortality (LVEF: OR=0.974, p=0.003; LVLS: OR=1.060, p=0.004), while the manual measurements couldn’t be used to predict mortality
  • Had significantly less variability than the experts’ manual measurements
  • Were similarly “feasible” as manual measurements when applied to the various echo exams
  • Showed stronger correlations with other COVID biomarkers (e.g. diastolic blood pressure)
  • Combined with other biomarkers to produce even more accurate mortality predictions

The authors didn’t seem too surprised that AI measurements had less variability, or by their conclusion that reducing measurement variability “consequently increased the statistical power to predict mortality.”

They also found that sonographers’ original scanning inconsistency was responsible for nearly half of the experts’ measurement variability, suggesting that a combination of echo guidance AI software (e.g. Caption or UltraSight) with echo reporting AI tools (e.g. Us2.ai or Ultromics) could “further reduce variability.”

The Takeaway

Echo AI measurements aren’t about to become a go-to COVID mortality biomarker (clinical factors and comorbidities are much stronger predictors), but this study makes a strong case for echo AI’s measurement consistency advantage. It’s also a reminder that reducing variability improves overall accuracy, which would be valuable for sophisticated prediction models or everyday echocardiography operations.

Unsupervised COVID AI

MGH’s new pix2surv AI system can accurately predict COVID outcomes from chest CTs, and it uses an unsupervised design that appears to solve some major COVID AI training and performance challenges.

Background – COVID AI hasn’t exactly earned the best reputation (short history + high annotation labor > leading to bad data > creating generalization issues), limiting most real world COVID analysis to logistic regression.

Designing pix2surv – pix2surv’s weakly unsupervised design and use of a generative adversarial network avoids these COVID AI pitfalls. It was directly trained with CTs from MGH’s COVID workflow (no labeling, no supervised training) and accurately estimates patient outcomes directly from their chest CTs.

pix2surv Performance – pix2surv accurately predicted the time of each patient’s ICU admission or death and applied the same analysis to stratify patients into high and low-risk groups. More notably, it “significantly outperformed” current laboratory tests and image-based methods with both predictions.

Applications – The MGH researchers believe pix2surv can be expanded to other COVID use cases (e.g. predicting Long COVID), as well as “other diseases” that are commonly diagnosed in medical images and might be hindered by annotation labor.

The Takeaway – pix2surv will require a lot more testing, and its chance of maintaining this type of performance across other sites and diseases might be a longshot (at least right away). However, pix2surv’s streamlined training and initial results are notable, and it would be very significant if a network like this was able to bring pattern-based unsupervised AI into clinical use.

Get every issue of The Imaging Wire, delivered right to your inbox.

You might also like..

Select All

You're signed up!

It's great to have you as a reader. Check your inbox for a welcome email.

-- The Imaging Wire team

You're all set!