Take a deep breath. You survived another RSNA conference.
While a few hardy souls are still enjoying educational sessions in the cozy confines of McCormick Place, the final day of the exhibit floor yesterday marks the end of RSNA 2023 for most attendees. And what a show it was.
Predictions were that AI would dominate the scientific sessions at RSNA 2023, a forecast that largely panned out. A November 28 session was a case in point, in which a series of top-quality papers were presented on one of the most promising use cases of AI, for breast screening:
- A homegrown AI algorithm that analyzed screening breast ultrasound exams in addition to FFDM and DBT mammograms boosted sensitivity for detecting cancer in 12.5k patients, with better sensitivity for women with dense breasts (71% vs. 60%) and non-dense breasts (79% vs. 63%)
- AI did a good job of detecting breast arterial calcification (BAC) when used prospectively to analyze screening mammograms in 16k women across 15 sites. It found 15% of women had BAC, a possible marker for atherosclerotic disease
- Swedish researchers used their VAI-B validation platform to compare three AI algorithms (Therapixel, Lunit, and Vara) in 34k women, finding that using AI with a single radiologist boosted sensitivity 10-30% compared to double reading, with a slight loss in specificity (2-7%). VAI-B could be used to validate AI implementation and guide purchasing decisions
- Why does AI miss some breast cancers? South Korean researchers addressed this question by analyzing 1.1k patients with invasive cancers in which AI had a miss rate of 14%. Luminal cancers were missed most often
- Adding AI analysis of prior images to current studies with FFDM and DBT boosted sensitivity for cancer detection in 30k patients, with sensitivity the highest for two years of priors compared to no priors (74% vs. 70%)
The Takeaway
This week’s research points to an exciting near-term future in which AI will help make mammography screening more accurate while helping breast radiologists perform their jobs more efficiently. Landmark studies toward this end were published in 2023 – this week’s RSNA conference shows that we can expect the momentum to continue in 2024.