MR Scanners

MRI Recon Gets Real with AI-Driven Protocols

AI-based data reconstruction for MRI scans took a step forward this week with studies showing how to generate 3T-like images from ultralow-field scanners, and improve scanner efficiency by cutting energy consumption.

MRI is radiology’s premier modality, but MRI scanners are cumbersome to install and expensive to operate. 

  • Ultralow-field scanners could help but some believe they lack the image quality for some clinical applications. 

Enter AI-based image reconstruction. Deep learning protocols are being developed for a wide range of imaging modalities, from PET to CT to MRI. 

  • These algorithms take images acquired with lower-quality input data – be it less CT radiation dose or lower MRI field strength – and upscale them to resemble full-fidelity images.

This trend is illustrated by research published this week in Radiology in which researchers tested a generative adversarial network algorithm called LowGAN for reconstructing data acquired on Hyperfine’s Swoop 0.064T portable ultralow-field MRI scanner.

  • Their goal was to enable Swoop to generate images resembling those acquired on a 3T system. 

After training LowGAN on paired 3T and 0.064T images, they tested the algorithm in 50 patients with multiple sclerosis and further validated it with a separate 13-patient cohort. They then judged LowGAN against several measures of MR image quality, finding that it …

  • Showed the biggest improvement on synthetic FLAIR and T1 images.
  • Improved conspicuity of white matter lesions, without introducing false lesions.
  • Increased consistency of cortical and subcortical volume measurements with 3T images.
  • But was unable to reveal brain lesions that were missed in the original low-field scans. 

AI-based data reconstruction also has environmental implications. Medical imaging is a major contributor to greenhouse gas emissions, and anyone who’s managed an MRI operation knows how much energy these massive scanners consume. 

  • A second paper published this week in Radiology described how MRI acceleration – scans acquired at a faster speed and then reconstructed for better image quality – reduced energy use, lowering carbon emissions while boosting imaging capacity. 

Researchers tried three techniques for speeding MRI acquisition – parallel acceleration, simultaneous multi-slice, and a deep learning algorithm. 

  • All three reduced energy consumption 21% to 65% and increased daily capacity by one to seven scanning slots, with deep learning showing the biggest effect.

The Takeaway

The new papers demonstrate an exciting future in which less powerful data acquisition technologies can be upscaled with AI to produce images that more closely resemble state-of-the-art scanning. The benefits will be enjoyed by both patients and the planet.

Get every issue of The Imaging Wire, delivered right to your inbox.

You might also like

Like the website? You'll love the newsletter

Completely free. Every Monday and Thursday

You might also like..

Select All

You're signed up!

It's great to have you as a reader. Check your inbox for a welcome email.

-- The Imaging Wire team

You're all set!